

Cartography

Spatial Computing - University of Minnesota

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps:ceference and thematic.

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps: reference and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps: reference and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to distinguish between types of thematic maps and choose theceorrect type for a given geocommunication need.

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps: reference and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to distinguish between types of thematic maps and choose theceorrect type for a given geocommunication need.

"All maps area form of geocommunication.They are designed to communicate something about our spatial environment to amap reader or user... Geo-
5. communication is at the core of defining what a map is because it exemplifies what a map does."
(Muehlennaû 2013)
"All maps are a form of geocommunication. They are designed

Map Design for Interactive
and Mobile Devices

Ian Muehlenhaus (c5) CRC Press to communicate something about our spàtial environment to a map reader or user... Geocommonication is at the core of defining what a map is because it exemplifies what a map does."
*Excellent maps are designed with a communicative purpose [in mind]. A map that merely represents data is no more useful than an encyclopedia."

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps: reference and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to distinguish between types of thematic maps and choose theceorrect type for a given geocommunication need.

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish between and understand the purpose of the two major types of maps:reference and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to distinguish between types of thematic maps and choose thecorrect type for a given geocommunication need.
5. Have an understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically changed (and changing) professional context of modern cartography.
2. Be able to distinguish begueen far understand the purpose of the two major types of ops: derence and thematic.
3. Know the limitations opopular online and mobile reference maps. (Technical Pack: Know how to get around them)
4. Be able to dis Mg guishetween types of thematic maps and choose thecorrect type for a given geocommumication need.
5. Hacm understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)
USA Asia China Europ
France | Francois Hollande
Home * NEWs * world news
World's oldest ma
$\mathbf{1 4 , 0 0 O}$ years ago

Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago.

Image 1 of 2
Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago Photo: APA

By Fiona Govan in Madrid
7:30AM BST 06 Aug 2009

Print this article
Share 255

Facebook

Twitter
\square
1

Spain
News » World News » Europe »

Related Partners

The best way to transfer money overseas

The Telegraph
Like $1,852,167$
xfinıt

WITHOUT CHANGING YOUR SERVICE.

(Jackson 2005)

http://www.w3.org/2005/Talks/0513-webplatform/

GoogleMaps: There are very few cartographers involved

"Today, a majority of online and mobile maps are created by computer scientists, Web designers, orfself-taught coders...In èssence, it seems the craft of online mapmaking has developed without too much input from the discipline of cartography itself."

(Muehlenteus 2013)

The 10 Most Popular Apps in the U.S.

Average monthly users (18+) of the most popular smartphone apps indretnited States in 2013

http://www.statista.com/chart/2082/top-smartphone-apps-2013/

mashup of US drone attacks in Pakistan:

http://cartastrophe.wordpress.com/2010/03/22/a-war-without-humans/
time machine
August 2014
October 2012
June 2012
April 2012
January 2012
September 2011
February 2011
January 2011
December 2010
October 2010
September 2010
June 2010
May 2010
March 2010
February 2010
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
other things about maps
Andy Woodruff
Atlas of Design
Axis Maps blog
indiemaps
Making Maps
Strange Maps
other things in general
FlowingData
I Love Typography
categories
Animated (1)
Author Criticism (5)
Choronlath (g)

(Muehlenhaus 2013)

Two groups of people are essentialfor the future of online/mobile maps:

Two groups of people are essentialfor the future of online/mobile maps:

Computing-oriented folks
Swho lack a formal
cartography background

Two groups of people are essentialfor the future of online/mobile maps:

Computing-oriented folks Carto/Geo-oriented folks Swho lack a formal who lack a formal cartography background computing background

Two groups of people are essentialto the future of online/mobile maps:

Computing-oriented folks Carto/Geo-oriented folks Swho lack a formal who lack a formal cartography background computing background

Cartography

Spatial Computing - University of Minnesota

Attributions

Some maps © OpenStreetMap contributors (www.openstreetmap.org/copyright)

Cartography

Spatial Computing - University of Minnesota

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically chaoged (arid changing) professional context of Ggelernydtography.
2. Be able to distinguish between and understand the purpose of the two major types of maps:ceference and thematic.
3. Know the limitadioms ofpopular online and mobile reference maps. (Technical Pack: Know how to get around them)
4. Be able to di\&Oguish Between types of thematic maps and choose thecorrect type for a given geocommumication need.
5. Hacon understanding of some of the compuiting-oriented innovation going on in cartography (i.e. spatialization)

The two types of most commonlyo encountered maps for many people:

Online maps

(a.k.al hap websites)

Mobile Maps

(a.k.a. map smartphone apps)

Well-known "online maps" / map websites:

Bing Maps

Well-known mobile map apps:

Waze

Nokia HERE Maps
Apple Maps app

The 10 Most Popular Apps in the U.S.

Average monthly users (18+) of the most popular smartphone apps indretnited States in 2013

http://www.statista.com/chart/2082/top-smartphone-apps-2013/

The two types of most commonlyo encountered maps for many people:

Online maps

(a.k.al hap websites)

Mobile Maps

(a.k.a. map smartphone apps)

"Help us achieve a future where no child dies from a parent's gun"

```
HERES HOW *
```


In Climbing Income Ladder, Location Matters

A study finds the odds of rising to another income level are notably low in certain

MAP：The best places to be a Twin Cities transit commuter
Posted by：Eric Roper｜Updated：October 7，2014－5：43 PM

Election maps:

Electownort 2012
2012 Election Results Map

http://election2012.npr.org/results-map.html

Berliner \quad Ahi Morgenpost Bundestagswahl 2013 in Berlin Alle Stimmen der 1709 Wabllokale

KLEINPARTEIEN
Hier kommen die Kleinen groß raus

HARTZ-IV
Kieze mit den Langzeitarbeit

Live Election Results 2014，．．．₹
（e）$=-$ www．ndtv．com／elections／general－election－results－2014 \square

NTI

亚然盆
Your customer service ． min
 technology is looking pretty sad

MODERNIZE HOME｜LNE BLOA｜RESUUTS｜MLAS｜CABNET｜MAPS｜PCRSOMMIIES｜
ELECTIONS

RESULTS：MAHARASHTRA
rumeswan

http：／／www．ndtv．com／elections／general－election－results－2014

Ψ	BJP	123	+75
\pm	SS	63	+19

Philadelphia @San Erancisco -- Joe Buck, Troy Aikman [AK; HI]
Atlanta @ Minnesotá -- Chris Myers, Ronde Barber
UPDATES:
http://506sports.com/nfl.php?yr=2014\&wk=4

Publicly-displayed local maps:

World Atlases

USA Asia China Europ
France | Francois Hollande
Home * NEWs * world news
WOrld'S oldest ma
14,00O years ago

Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago.

Image 1 of 2
Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago Photo: EPA

By Fiona Govan in Madrid
7:30AM BST 06 Aug 2009
A stone tablet found in a cave in Abauntz in the Navarra region of

Print this article
Share 255

Facebook
238

Twitter

Spain
News » World News » Europe »

Related Partners

The best way to transfer money overseas

Reference Maps
 World's oldest map: Spanish cave has landsı 14,000 years ago

Reference Maps

Used primarily for navigation and orientation

Reference Maps

Used primarily for navigation and orientation

Reference Maps

Intended to
 (geo) communicate the location of specific entities (and how to get e to them)

Used primarily for navigation and orientation

Reference Maps

World's oldest map: Spanish cave has lands 14,000 years ago

Archaoelogists have diso
almost 14,000 years ag

.

Reference Maps

Thematic maps are "used to emphasize the spatial distribution of one or more geographic attributes"

The size of an army

Thematic maps are "used to emphasize the spatial distribution of one or more geographic attributes"

The size of an army

Where an army comes from

Thematic maps are "used to emphasize the spatial distribution of one or more geographic attributes"

Thematic Maps

The size of an army

Where an army comes from

Thematic maps are "used to emphasize the spatial distribution of one or more geographic attributes"

Which footbalfgameis on TV

Thematic Maps

The size of an army

Where an army comes from

Thematic maps are "used to emphasize the spatial distribution of one or more geographic attributes"

Which footbalfgameis on TV
Election results

Thematic Maps

Intended to
(geo)communicate the location of specific entities (and how to get to them)

Thematic maps are "used to emphasize the spatial distribution of one or more
Used primarilyfor navigationrand orientátion

Cartography

 Spatial Computing - University of Minnesota
Learning Objectives

1. Understand the drastically changed (and changing) professional context of medern cartography.
2. Be able to distinguish bètween and understand the purpose of the two major types of maps:reference and thematic.
3. Know the limitations of popular online and mpbile reference maps. (Technical track: Know how to get arow d them)
4. Be able to distinguish between types of thematic maps and choose the correct type for a given geocommunication need.
5. Haveånunderstanding of some of the computing-oriented innoyation going on in cartography (i.e. spatialization)

Cartography

Spatial Computing - University of Minnesota

Attributions

Some maps © OpenStreetMap contributors (www.openstreetmap.org/copyright)

Cartography

Spatial Computing - University of Minnesota

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically chapged (arid changing) professional context of Ggelernydtography.
2. Be able to distinguish begveen dad understand the purpose of the two major types of aps: dierence and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to di\& Oguish Between types of thematic maps and choose thecorrect type for a given geocommunication need.
5. Hacm understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)

Phonebook

Geographic Information System
(e.g. ArcMap 3.3)
http://map.sdsu.edu/geog581/week_02.htm

01 japanese food - Google Maps *

WEDDING EVENTS:

Ceremony

The Wit Hotel
201 N. State St.
Chicago, IL 60610

Reception

 Signature Room John Hancock Center 875 N. Michigan Ave. Chicago, IL 60611
Main Hotel

The Drake Hotel 140 E. Walton PI.
Chicago, IL 60611

Brunch

Wiener Circle 2622 N. Clark St Chicago, IL60614

WEDDING EVENTS:

Ceremony

The Wit Hotel 201 N. State St. Chicago, IL 60610

Reception

 Signature Room John Hancock Center 875 N. Michigan Ave. Chicago, IL 60611
Main Hotel

The Drake Hotel 140 E. Walton PI.
Chicago, IL 60611

Brunch

Wiener Circle 2622 N. Clark St Chicago, IL60614

WEDDING EVENTS:

Ceremony

The Wit Hotel 201 N. State St. Chicago, IL 60610

Reception

 Signature Room John Hancock Center 875 N. Michigan Ave. Chicago, IL 60611
Main Hotel

The Drake Hotel 140 E. Walton PI.
Chicago, IL 60611

Brunch

Wiener Circle 2622 N. Clark St Chicago, IL60614

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically chapged (arid changing) professional context of Ggelernydtography.
2. Be able to distinguish begveen dad understand the purpose of the two major types of aps: dierence and thematic.
3. Know the limitations of popular online and mobile reference maps. (Technical track: Know how to get around them)
4. Be able to di\& Oguish Between types of thematic maps and choose thecorrect type for a given geocommunication need.
5. Hacm understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)

Cartography

Spatial Computing - University of Minnesota

Limitations of popular ondine and mobile reference maps:

1. Inaccurate representations (e.g. Mercator projection)

Arthur H. Robinson

http://www.geography.wisc.edu/ hstgy/faculty.php
"Take an orange and draw something on it -- say, a human face. Now carefully remove the peel, trying to keep it in one xpiece, and flatten it against your kitchen table. You'll see that in making a two-dimensional object out of a round one, something has to give. Either the face gets distorted and looks all 'mushed out,' or inflattening the peel, it breaks into segments, dividing the face as well into several parts."

Anticie Talk

List of map projections

Antice Talk

List of map projections

Nain page
Consertsos Curaet ovems
Paxton asce fuecon asse Dorate so Wrposia Weirasa Stop merastion ${ }_{\text {Hap }}^{\text {Abos Whipeda }}$ Commetiy posu Frosest elanges Contast pase Tost Weat inca here fanted clarges upions se Spocat pagas Perracemisk Prige iftarmison wedasa sem Cun ex pase Aretereort Crase a beok
Dentboed as POF Prmaste veson Larganges \quad 。 Espatal
Faxchas日本相 Pyecomen AEat inea

From Wieposia，tre free encyclopedia

(Don't use this except for exploratory data analysis!)

Cartography

Spatial Computing - University of Minnesota

Limitations of popular ondine and mobile reference maps:

1. Inaccurate representations (e.g. Mercator projection)
$\therefore 2$
 （2）zero power requirement
（1）larger display sizes

Paper Map

（1）larger display sizes
$\therefore 2$

$\therefore 2$
$\therefore 2$
$\therefore 2$ 1．

$\therefore 2$
$\therefore 2$
$\therefore 2$
$\therefore 2$
$\therefore 2$

[^0]USA Asia China Europ
France | Francois Hollande
Home * NEWs * world news
WOrld'S oldest ma
14,00O years ago

Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago.

Image 1 of 2
Archaeologists have discovered what they believe is man's earliest map, dating from almost 14,000 years ago Photo: EPA

By Fiona Govan in Madrid
7:30AM BST 06 Aug 2009
A stone tablet found in a cave in Abauntz in the Navarra region of

Print this article
Share 255

Facebook
238

Twitter

Spain
News » World News » Europe »

Related Partners

The best way to transfer money overseas

Cartography

 Spatial Computing - University of Minnesota
Limitations of popular online and mobile reference maps:

1. Inaccurate representations (e.g. Mercator projection)
2. Paper maps are still better in a few ways

Using maps in print

- I'd like to use your maps in print. What do I need to know?

Google Maps and Earth has built-in print functionality. You may print Content from Maps and Earth for personal use and enlarge it. In all uses where print will be distributed, first be sure to read our FAQwom applicable product Terms of Service and fair use. Second, all uses must properly show attribution to both Google and our data providers. Please see our attribution page for more information.

When using Google Maps and Earth Content in print, any images used mustreflect how they would look on online. For example, you are not allowed to make any changes (e.g. delete, blur, eto. to our products that would make them look genuinely different. This includes, but is not limited to, adding clouds or other natural elements, altered user-interfaces, and modification that do not appear in the actual product.

No explicit permission is required for your print projed. We are unable to sign any letter or contract specifying that your project has our explicit permission.

+ I'd like to use Street View imagery in my print project. Can I?
+ I need high-resolution images for my print praject. Can you provide them?
+ I'd like to use yourmaps in a presentation. Can I?
+ I'd like to use your imagery in a guidebook. Can I?
- I'd like to use your maps on a t-shirt. Can I?

Google Maps may be not used in items for resale (i.e., t-shirts, beach towels, shower curtains, mugs). This restriction does not apply to media such as books, but again, those uses must follow our attribution guidelines.
http://wwiw:google.com/permissions/ geogtidelines.htm|\#maps-print d to know?

+ How does the broadcast license process work?

Hotels.com - hotels in Queb... x

\bar{Z}	
Show List	\square

Quebec, Canada

Fri 24 - Sat 25, October 2014, 1 night 1 room, 2 adults,

, Change search

Sainte-Foy-Sillery
\square La Cite-Limoilou

25,000

map loads

90

consecultives dzys

Copyright and License

OpenStreetMap is open data, licensed under the Open Data Commons Open Database License (ODbL).

You are free to copy, distribute, transmit and adapt our data, as long as you credit OpenStreetMap and its contributors. If you alter or build upon our data, you may distribute the result only under the same ligence. The full legal code explains your rights and responsibilities.

The cartography in our map tiles, and our documentation, are licensed under the Creative Commons Attribution-ShareAlike 2.0 license (CC BY-SA).

How to credit OpenStreetMap

We require that you use the credit "© OpenStreetMap contributors":

You must also make it clear that the data is available under the Open Database License, and if using our map tiles, that the cartography is licensed as CC BY-SA. You may do this by linking to this copyright page. Alternatively, and as a requirement if you are distributing OSM in a data form, you can name and link directly to the license(s). In media where links are not possible (e.g. printed works), we suggest you direct your readers to openstreetmap.org (perhaps by expanding 'OpenStreetMap' to this full address), to opendatacommons.org, and if relevant, to creativecommons.org.

For a browsable electronic map, the credit should appear in the corner of the map. For example:
http://www.openstreetmap.org/copyright

Cartography

 Spatial Computing - University of Minnesota
Limitations of popular online and mobile reference maps:

1. Inaccurate representations (e.g. Mercator projection)
2. Paper maps are still better in a few ways
3. Terms of use limitations

The Celegraph
 Nicaragua
Nicaragua has used an error on Google's internet maps system to justify an invasion of Costa Rica.

Print this article

Informing Online and Mobile Map Design with the Collective Wisdom of Cartographers

Johannes Schöning
Expertise Ctr. for Digital Media
Hasselt University - tUL - iMinds
johannes.schoening@uhasselt.be

Brent Hecht
Dept. of Comp. Sci and Engineering
University of Minnesota
bhecht@cs.umn.edu

Werner Kuhn
Department of Geography
UC Santa Barbara
kuhn@geog.ucsb.edu

ABSTRACT

Despite the large and growing prominence of online and mobile maps, they have not been broadly and systematically examined with a lens informed by traditional cartography. Using an approach rooted in cartographic theory and a unique dataset of 382 publicly-displayed local maps, we identify the "collective wisdom" of hundreds of cartographers with respect to a number of cartographic design decisions. We compare our findings approaches taken in popular onfine and mobile map platforms and develop suggestions for incorporating the collective wisdom of cartographers into thesersystems. Our suggestions include the adoption of location-aware cartography, in which cartographic approaches are intelligently varied based on the type of location being viewed. We provide mockup designs of online and mobile maps that implementour suggestions and discuss means by which the surprising gap between online and mobile maps and traditional cartography may be bridged.

Author Keywords

Mobile maps; online maps; cartography; geography; local
in which "mobile thatters most" [27]. The latter assertion is supported by recent statistics that suggest that the Google Maps app is the most popular app in the world [8].

The rapid increase in the popularity of online and mobile maps means that cartography now plays a more prominent role in many people's daily lives than ever before. Despite this newfound prominence, however, online and mobile maps have not been systematically examined with a traditional cartographic lens. Indeed, a surprisingly large gap exists between traditional cartography and well-known online and mobile maps [11,36]. For instance, Google Maps has been developed almost exclusively by noncartographers, although this has been changing recently [24]. Along the same lines, Apple Maps' cartographic approaches have been the subject of heavy criticism by professional mapmakers $[4,15]$.

The high-level goal of this paper is to begin the process of better integrating traditional cartography and modern online/mobile maps. Our approach for doing is so is rooted in cartographic theory and allows us to infer the collective wisdom of cartocranhere neesent in a cornus of mane neino

Space Usage Rules

STAATLICHES NATURSCHUTZGEBIET HOHES VENN
RESERVE NATURELLE DOMANIAALE DES HAUTES-FAGNE STAATSNATUURRESERVAAT HOS HAUTES-FA

Naturschutzgebiet - Reserve noturcle - Natuirme in IENEN Byaminn
$\Delta-\frac{2}{2}$ 2
2
2

-

Wald - Foret - Bo

Nan

You Can't Smoke Here: Towards Support for Space Usage Rules in Location-aware Technologies

Pavel Samsonov*, Xun Tang ${ }^{\S}$, Johannes Schöning ${ }^{\star}$, Wernerkuhn ${ }^{\dagger}$, Brent Hecht ${ }^{\ddagger \S}$,
 of Geography, University of California, Santa Barbara; ${ }^{\ddagger}$ GroupLens Research, University of Minnesota
\{pavel.samsonov, johannes.schoening\}@uhasselt.be \{bhecht,xuntang\}@cs.umn.edu, kuhn@geog.ucsb.edu

ABSTRACT

Recent work has identified the lack of space usage rule (SUR) data - e.g. "no smoking", "no campfires" - as an important limitation of online/mobile maps that presents risks to user safety and the environment. In order to adtress this limitation, a large-scale means of mapping SURs muist be developed. In this paper, we introduce and motivate the problem of mapping space usage rules and take the first steps towards identifying solutions We show how computer vision can be employed to identify SUR indicators in the environment (e.g. "No-smoking" signs) with reasonable accuracy and describe techniquesthat can assign each rule to the appropriate geographic fearure. We also discuss how our methods, can be applied to large repositories of spatially-refenced images (e.g. Google Street View) to generate global-scale datasets of SURs.

Figure 1: An example of a "no-sign" showing a space usage rule (SUR), specifically "no dogs allowed".
entirely new class of context-aware applications. For instance, it is easy to imagine a space usage rule-based app that tells smokers if it is legal to light a cigarette in their current location and similarly, an app that tells hunters
http://weww.cs.umn.edu/research/technical_reports/ view/14-022
caused severe environmental and property damage and was a serious hazard to public safety.

informatiCup 2015 • Aufgabe

Space Usage Rules

Einführung

Im Jahr 2013 machte ein Besucher eines Nationalparks in Kalifornien ein Lagerfeuer. Dieses Lagerfeuer geriet außer Kontrolle und verursachte auf einer Flachê von über 1000 Quadratkilometern den als „Rim Fire" bekannt gewordenen Riesenwaldbrand. Dabei galt am Brandherd eine sogenannte Space Usage Rule (SUR), die das Anlegen von Lagerfeuern streng verbietet. Diese Information konnte der Besucher, der sich zuvor auf seinem Mobiltelefon über die Parkregeln informiert hatte, aber digital nicht auffinden.

Space Usage Rules sind dabei nicht aufdas Verbot von Lagerfeuern beschränkt, sondern begegnen uns tagtäglich. Regeln wie zum Beispiel „Rauchen verboten", „Angeln verboten" oder „Schwimmen verboten" dienen dabei der öffentlichen Gesundheit und Sicherheit, dem Umweltschutz oder der Einhaltung

http://intormaticup.gi.de/startseite/ informaticup-2015.html

Cartography

 Spatial Computing - University of Minnesota
Limitations of popular ondine and mobile reference maps.

1. Inaccurate representations (e.g. Mercator projection)
2. Paper maps are still better in a few ways
3. Terms of use limitations
4. Cartographic hegemony

Cartography

 Spatial Computing - University of Minnesota
Limitations of popular ondine and mobile reference maps.

1. Inaccurate representations (e.g. Mercator projection)
2. Paper maps are still better in a few ways
3. Terms of use limitations
4. Cartographic hegemony

Map

Imagery ©2014 Google, Map data ©2014 Google Terms Privacy Report a problem 500 ft L

Cartography

Spatial Computing - University of Minnesota

Attributions

Some maps © OpenStreetMap contributors (www.openstreetmap.org/copyright)
"Obsolete Book - 5/365" by Jaime/ CC BY 2.0 (https://flic.kr/p/7tq9i3)

Cartography

Spatial Computing - University of Minnesota

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically chaoged (arid changing) professional context of Ggelernydtography.
2. Be able to distinguish begveen ded understand the purpose of the two major types of waps: derence and thematic.
3. Know the limitadioms ofpopular online and mobile reference maps. (Technical Pack: Know how to get around them)
4. Be able to distinguish between types of thematic maps and choose theceorrect type for a given geocommunication need.
5. Hacm understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)

Election maps:

Electownort 2012
2012 Election Results Map

http://election2012.npr.org/results-map.html

MAP: The best places to be a Twin Cities transit commuter
Posted by: Eric Roper | Updated: October 7, 2014-5:43 PM

7 comments | print

Types of thematic maps we're going (to

 cover:

Poverty in the United States

Percent of the Population Below the Poverty Line

Pct. Below Poverty Line
$\square 0.00-11.3 \%$
$\square 11.4-16.2 \%$
$\square 16.3-21.7 \%$
$\square 21.8-29.6 \%$
$\square 29.7-49.5 \%$

Data sources: U.S. Census American Community Survey 2006-2010, ESRI Classification: Natural Breaks

COLOR-related challengeswhen making choropleth maps.

\author{

1. Deciding on theset of colors
 you will use
}
2. Deciding how to assign colors to specific data values (data classification)

COLOR-related challengeswhen making choropleth maps:

\author{

1. Deciding on theset of colors
 you will use
}

QUANTITATIVE attributes

QUALITATIVE attributes

With quantitative attributes, you wantcolor schemes like:

Poverty in the United States

Percent of the Population Below the Poverty Line

Population Density in the U.S.

People per Square Mile by County

$\square 0-822$
$\square 833-3270$
$\square 3721-9675$
$\square 9676-20418$
$\square 20419-69568$

85+ Population in the United States

Pct of the Population that is 85 Years Old or Older

$\square 0.0-1.4 \%$
$\square 1.4-2.0 \%$
$\square 2.0-2.8 \%$
$\square 2.8-3.9 \%$
$\square 3.9-8.3 \%$$\bigotimes^{0}$

Data sources: U.S. Census, ESRI
Classification: Natural Breaks

Poverty in the United States

Percent of the Population Below the Poverty Line

Poverty in the United States

Percent of the Population Below the Poverty Line

Poverty in the United States

Percent of the Population Below the Poverty Line

Data sources: U.S. Census American Community Survey 2006-2010, ESRI Classification: Natural Breaks

Divergent color schemes:

President Map

Map \mid Big Board \mid Scenarios \mid Exit Polls
332 Obama 0

UPDATED NOV 29

[^1]
COLOR-related challengeswhen making choropleth maps:

\author{

1. Deciding on theset of colors
 you will use
}

QUANTITATIVE attributes
-
QUALITATIVE attributes

Examples of qualitative spatial attributes:

1. Land cover type (e.g urban, forest, water)
2. The primaryaeligion in an area 3. The primary language spoken in area
3. Theregionof an area like East Cø̄ast, West Coast, Midwest, etc.

COLOR-related challengeswhen making choropleth maps:

D. Deciding on theset of colors you will use
2. Deciding how to assign colors to specific data values (data classification)

Poverty in the United States

Percent of the Population Below the Poverty Line

Data sources: U.S. Census American Community Survey 2006-2010, ESRI Classification: Natural Breaks

Example Unclassed Choropleth Map
In the map below，notice how you can easily see a large geographic pattern of unemployment rates，but it is very hard to compare or rank counties：try to accurately arrange the counties in California from lowestio highest．．．it＇s nearly impossible．

Limitations

There are at least three major drawbacks with unclassed choropleth maps．First，while the idea of letting our data speak for itself is appealingwe often find it has too much to say．Cartographers have long relied on classification to suppress random noise or insignificant variations to highlight large，major differences．For example，a very simple 2 －class map of

Choropleth Maps

Unclassed Maps

Classed Maps

Natural
Breaks

Pretīy Breaks

Defined Interval

Std.
Deviation

Geom.
Interval

Natural Breaks Classification

Pct, Below Poverty Line Attribute Value Distribution

Natural Breaks Classification

Pct,Below Poverty Line Attribute Value Distribution

Natural Breaks Classification

Population Density (People per Square Mile)

Population Density in the U.S.

People per Square Mile by County

-0-822
$\square 833$ - 3270
3721-9675
$\square 9676$ - 20418
\square 20419-69568

Population Density in the U.S.

People per Square Mile by County

Population Density in the U.S.

People per Square Mile by County

$\square 0-12.1$
$\square 12.2-31.7$
$\square 31.8-61.2$
$\square 61.3-154.2$
$\square 154.3-69586.4$$e^{0}$

Data sources: U.S. Census, ESRI
Classification: Natural Breaks

Choropleth Maps

Unclassed Maps

Classed Maps

Classification

85+ Population in the United States

Pct of the Population that is 85 Years Old or Older

$\square 0.0-1.4 \%$
$\square 1.4-2.0 \%$
$\square 2.0-2.8 \%$
$\square 2.8-3.9 \%$
$\square 3.9-8.3 \%$$\bigotimes^{0}$

85+ Population in the United States

Pct of the Population that is 85 Years Old or Older

COLOR-related challengeswhen making choropleth maps.

\author{

1. Deciding on theset of colors
 you will use
}
2. Deciding how to assign colors to specific data values (data classification)

Number of data classes: 5

Only show:

\square colorblind safe \square print friendly \square photocopy safe

Context:
\square roads
\square cities
\checkmark borders

Background:

- solid color terrain
(i) 5-class Accent

준

cote in B $i=1 M=i 2.0$ color advice for cartography
http://www.colorbrewer.org

The Cartographer Who's Tra x
The Cartographer Who's Tra...

http://www.wired.com/2014/10/cindy-brewer-map-design/

MapLab
 here be dragons

The Cartographer Who's Transforming Matp Design BY GREG MILLER 10.20.14 | 6:30 AM | PERMALINK

Number of data classes: 5

Only show:

\square colorblind safe \square print friendly \square photocopy safe

Context:

\square roads
\square cities
∇ borders
Background:

- solid color terrain
\qquad
color transparency
(i) \quad 5-class $\mathrm{Y} \mid \mathrm{OrBr}$ *

COLORBREWER 2.0
color advice for cartography

Types of thematic maps we're going (t)

 cover:

Population in the United States
 Number of People per County

Proportional Symbol Maps

Choropleth Maps

Unclassed Maps
Classed Maps

Population in the United States
 Number of People per County

Population in the United States

Number of People per County

Data sources: U.S. Census, ESRI
9818605

Pros and cons of graduated/proportional maps relative to choropleth maps

Pro: Differences in size may be better than differences ${ }^{\text {cin }}$ color for some purposes

Con: Symbols guerlap

Population in the United States

Number of People per County

Pros and cons of graduated/proportional maps relative to choropleth maps

Pro: Differences in size may be better than differences ${ }^{\text {chin }}$ color for some purposes

Con: Symbols overlap
Con: Confusing to use size for percéntages, densities, etc.

Types of thematic maps we're going(t)

 cover:

http://www-personal.umich.edu/~mejn/election/2012/ statemap 1024.png

$<$ Prev

A New York Times assessment of how states may vote, based on polling, previous election results and the political geography in each state.

Tossup (7)
Leaning Republican (2)

Leaning Democratic (6)

Tossup (7)	
Colorado	
President Obama's victory in Colorado was among his most prized accomplishments in 2008, after the state had yoted reliahly	

Maine has largely slipped from the ranks of top battleground states, with Democrats winning here in the last five nresidential elections. The after the state had yoted reliahly

The politics of Arizona are gradually shifting with its demographics. For now, Republicans believe their party has an advantage in nresidential

Types of thematic maps we're going(t)

 cover:

Above: Number of jobs accessible from different points within 30 minutes, between 7 a.m. and 9 a.m. Click here to see the full map, with a legend.

2 Minneapolis officers praised for saving man stabbed downtown

Man with dog shoots up 19 Bar, wounding two before fleeing

Minneapolis seeks high-rise for Nicollet Hotel

Cartography

 Spatial Computing - University of Minnesota
Attributions

By Vladimir Menkov (Own work) [GFDL (http://www.gnu:org/copyleft/fdl. html), CC-BY-SA-3.0 (http:// creativecommons.org/licenses/by-sa/3.0/) or CC-BY-SA-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], viá Wikimedia Commons

Cartography

Spatial Computing - University of Minnesota

Cartography

Spatial Computing - University of Minnesota

Learning Objectives

1. Understand the drastically chaoged (arid changing) professional context of Ggelernydtography.
2. Be able to distinguish begueen dad understand the purpose of the two major types of waps: derence and thematic.
3. Know the limitations ofpopular online and mobile reference maps. (Technical Pack: Know how to get around them)
4. Be able to di\&Oguish Between types of thematic maps and choose thecorrect type for a given geocommumication need.
5. Have an understanding of some of the computing-oriented innovation going on in cartography (i.e. spatialization)

Spatialization

In Climbing fncome Ladder, Location M

Astudy fuds the ode of wising to another income level are notably low in certain aities, like Atlanto and Charlotte, and much higher in New York and Boston.

The chance a child raised in the bottom fitth rose to the topffith

20\%
15%
$\square 10 \%$
S.F.: 11.2%
4%
L.A.: 9.6% 。

The top fift is equal to family income of more than 570,000 for the chid by age 30 or more than $\$ 100,000$ by age 45 .

There are two types of spatialization...

Implicit Scpatialization
(e.g. Skupiond Fabrikant 2003)

Explicit Spatialization
(Hecht et al. 2012)

Figure 16. Visual support for evaluating cluster validity. The visualization is based on a 60 -by- 80 neuron SOM. It shows individual point locations for several thousand AAG conference abstracts, the 25 -cluster level of a hierarchical cluster solution ranked cluster labels, and an indication of how much the highest-ranked terms dominate particular regions. Low term dominance may indicate a lack of sharply defined themes and therefore the existence of relatively heterogeneous olusters.

WHAT WOULD THE UNITED STATES OF REDDIT LOOK LIKE MAPPED?

Map courtesy Dataclysm: Who We Are When No One's Looking by Christian Rudder

There are two types of spatialization...

Implicit Scpatialization
(e.g. Skupornd Fabrikant 2003)

Explicit Spatialization
(e.g. Hecht et al. 2012)

Implicit Spatializationß
(e.g. Skupin and Fabrikant 203)

Data-dryyen, implicit reference systems

Real-life reference systems

Dr. Kirk Goldsberry

Geography Professor

@ Michigan State

Visiting Professor
@ Harvard

Contributor
http://grantland.com/the-triangle/pass-atlas-peyton-manning-vs-the-seahawks-pass-defense/

Reference System = Football Field

DIRK NOWITZKI

BUZZER BEATER IN NEW BORK!
http://grantland.com/the-triangle/nba-overnight-dirk-is-out-here-playing-h-o-r-s-e-with-peoples-lives/
Reference System = Basketball Court

There are two types of spatialization...

Implicit Scpatialization
(e.g. Skupiond Fabrikant 2003)

Explicit Spatialization
(Hecht et al. 2012)

Cartography

Spatial Computing - University of Minnesota

Attributions

"Globe" symbol by Bart Laugs of The NounProject

[^0]:

[^1]: Battleground states are called by New York Times editors. Other states are by The Associated Press.

