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ABSTRACT 
The public is increasingly concerned about the practices of large 
technology companies with regards to privacy and many other 
issues. To force changes in these practices, there have been 
growing calls for “data strikes.” These new types of collective 
action would seek to create leverage for the public by starving 
business-critical models (e.g. recommender systems, ranking 
algorithms) of much-needed training data. However, little is 
known about how data strikes would work, let alone how 
effective they would be. Focusing on the important commercial 
domain of recommender systems, we simulate data strikes under 
a wide variety of conditions and explore how they can augment 
traditional boycotts. Our results suggest that data strikes can be 
effective and that users have more power in their relationship 
with technology companies than they do with other companies. 
However, our results also highlight important trade-offs and 
challenges that must be considered by potential organizers. 
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1 Introduction 
Large technology companies are facing a growing wave of public 
criticism. Just in the last year, these companies have been 
condemned for a wide range of practices, including those related 
to privacy [13, 55], harassment [20], addiction [10], effects on 
democracy [12], and automation [1]. The breadth and scale of the 
public concerns about tech companies has even led to the 
popularization of the term “Big Tech” [25], an adaptation of the 
terms “Big Oil” and “Big Tobacco” [3, 28]. 

However, these same companies that anger the public often 
are dependent on the public in new ways. Specifically, in addition 
to needing users and customers to generate revenue, tech 
companies often rely on the public’s “data labor” [44] to power 
mission-critical intelligent technologies. For example, Google 
requires user clicks to train its ranking algorithm [45]. Similarly, 
the highly-profitable recommender systems employed by 
companies like Amazon and Netflix require large amounts of 
data from users (i.e. ratings, clicks, and views) [17, 53]. 

Seen through the lens of the public’s concerns about tech 
companies, these companies’ dependence on user data to fuel 
their intelligent technologies can be understood as a potentially 
powerful source of new leverage for the public. To help the 
public action this leverage, several authors have proposed the 
notion of “data strikes” (e.g. [2, 39, 44, 52]), in which users halt 
their data labor [44]. The basic logic that motivates data strikes is 
straightforward: if users withhold their data labor from a tech 
company, some of the company’s essential services will suffer, 
and this would then force the company to make concessions that 
are desired by the public. These concessions could range from 
improved privacy policies to profit sharing [2, 15]. 

Despite the growing discussion around data strikes, little is 
known about how this new type of collective action would work 
or about how data strikes relate to standard forms of collective 
action like traditional consumer boycotts (a type of collective 
action classified as political consumption [32, 42]). Additionally, 
as data strikes increasingly enter the realm of feasibility (see 
below), there is little empirical information about how effective 
data strikes could be, let alone the data strike configurations that 
would be most effective. Activists seeking to organize a data 
strike have no guidance regarding the number of users that 
would need to join them, the kinds of services most vulnerable, 
the types of users that would allow them to be most successful, 
or even whether strikes can be successful at all. Similarly, tech 
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companies are not aware of the potential damage that could be 
inflicted through data strikes. 

This paper seeks to improve our basic understanding of data 
strikes and provide much-needed empirical information about 
their effectiveness. We first situate data strikes in relationship to 
traditional boycotts, in which a user stops patronizing a 
company entirely. Through the introduction of a lightweight 
framework that (partially) describes collective action in a 
technology company context, we highlight that most traditional 
boycotts against a company operating data labor-dependent 
intelligent technologies will implicitly also include a data strike, 
but that data strikes can also occur independently from boycotts. 
For example, a consumer who continues to purchase products 
from an online retailer could engage in a data strike by using 
private browsing windows and not providing product ratings. 

Next, focusing on the domain of recommender systems, a 
family of intelligent technologies that are critical drivers of 
revenue [17, 51], we introduce a novel evaluation procedure for 
understanding collective action campaigns against technology 
companies. Our procedure uses a metric called surfaced hits, 
which can capture the effects of both a traditional boycott and a 
data strike. Leveraging surfaced hits, we examine how model 
performance changes depending on 1) the size of the 
participating group, 2) whether the participating group is a 
random group of users or a homogeneous group of users who 
share some characteristics (e.g. women, people interested in 
documentary movies), and 3) whether or not the group is 
conducting an independent data strike or are doing so as part of 
a traditional boycott. 

Our results confirm that users’ data labor power – which is 
mostly unique to online platforms and is manifest in a data 
strike – provides users with a new source of leverage in their 
relationships with technology companies. For small 
recommenders and in specific product spaces, this added 
leverage can be particularly substantial. A moderately-sized data 
strike alone – even when not part of a traditional boycott – can 
significantly harm the performance of a recommender system. 
Indeed, for moderately-sized data strikes, we observe 
recommender accuracy decreasing to the levels that defined the 
state-of-the-art in recommender algorithms in 1999. This power 
comes from the reduced performance for both non-striking users 
(who receive recommendations trained on less data) and striking 
users themselves (who receive recommendations that are not 
personalized). Additionally, our work shows that data strikes 
that occur as part of a traditional boycott add data labor power 
to the standard consumer power from a boycott, increasing the 
overall power of the collective action campaign.  

Finally, our work also highlights that data strikes that are not 
part of a traditional boycott represent a fundamentally new type 
of collective action, one in which the barrier to entry is much 
lower than in a boycott. Most notably, we observe that data strike 
participants can substantially reduce the utility of a 
recommender system without sacrificing access to the 
underlying products and services. Given that it has proven 
difficult for people with limited financial resources to participate 
in political consumption activities like boycotts [32], the 

demonstrated effectiveness of data strikes could democratize 
access to these activities (e.g. users who cannot afford to use 
expensive alternatives to online platforms can still strike). This is 
analogous to an offline boycott in which a user who cannot 
afford expensive pizza could still participate in collective action 
against a local low-price pizza chain while continuing to buy 
their products. 

Below, we adopt a standard structure to motivate, explain, 
and expand on our findings. We first cover related work, then 
discuss methods, followed by results. We close with a discussion 
of the issues identified in our results and by highlighting 
limitations. 

2 Related Work 
In this section, we describe how this research draws motivation 
from four areas in particular: the growing discussion related to 
data strikes, research on the relationships between tech 
companies and volunteer-created content, studies that generally 
seek to quantify the financial value of user data, and studies that 
looks specifically at ways to manipulate recommender system 
outputs. 

2.1 Data Strikes 
This research was most directly motivated by growing calls for 
collective action campaigns that force changes in technology 
platforms by leveraging the value of user data to these platforms 
[2, 11, 16, 23, 37, 44]. These growing calls use different, 
potentially conflicting framings of data as capital or data as labor 
[1]. With regard to the former (data as capital), collective action 
is framed in terms of a boycott, in which users stop their 
consumptive activities (e.g. purchasing products through a web 
platform, using a social media platform) which in turn prevents 
the flow of their capital (data, related revenue like advertising 
revenue) to the platform. This framing is exemplified by very 
recent boycotts put into practice against Facebook (e.g. [42]). The 
data labor view suggests that data “unions” should protect the 
interests of those who produce data (i.e. users) [2, 16, 44]. Just as 
traditional labor unions have implemented (and threatened) 
strikes to gain leverage when collectively bargaining, Lanier and 
others [16, 23] have written that data unions might similarly 
engage in a “strike”. These authors point out that users can 
leverage their data in ways that resemble both traditional 
boycotts and strikes. 

The diverse understandings of collective action campaigns 
that use data leverage needed to be integrated in order to make 
these campaigns concrete enough to simulate. Below in the 
Framework section, we enumerate one possible integration and 
use the corresponding framework to inform the design of our 
experiments.  

Ideas about collective action campaigns that use data leverage 
often imagine a future in which people can “delete their data” 
from an online platform, and this future is becoming 
increasingly realistic thanks to developments and discussions in 
the policy domain. For instance, the European Union recently 
adopted the General Data Protection Regulation (GDPR) [30], 
which includes a provision ensuring the right to erasure. Barring 
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special circumstances (e.g. data critical to public health research), 
individuals covered by the GDPR will have the right to request 
that their personal data be deleted. As such, the GDPR 
potentially empowers activists to engage in more powerful data 
labor-related collective action than previously possible, in 
particular by erasing old data instead of just stopping the flow of 
new data. While it remains to be seen how often and how 
effectively the right to erasure will be used in practice – and how 
it might apply to campaigns that use data leverage specifically – 
the inclusion of this right highlights a large shift in regulatory 
practices towards data usage. The GDPR could trailblaze the way 
for similar or even stronger provisions by other regulatory 
bodies (e.g. California’s State Government [6]).  

In keeping with this policy trajectory and with the typical 
vision of collective action campaigns that use data leverage, we 
simulate campaigns in which people can “delete their data” when 
they participate. However, our approach also applies to other 
contexts, for instance domains in which there is no existing data 
like reviews about a new television show or location data used to 
predict traffic (and less directly to contexts in which participants 
cannot delete data, but do not execute new data labor). 
Furthermore, very recent research suggests that simple tools like 
browser extensions may help web users successfully join web-
based collective action campaigns with low overhead for the 
user, which could help stop the flow of implicit behavioral data 
[39]. 

Finally, it is important to note that the social science 
literature can give some guidance as to how large one could 
expect the campaigns we examine to be. Data from Europe and 
the U.S. found that between 28% and 35% of consumers had 
engaged in an act of political consumption [32, 42], which 
includes either boycotting or “buycotting” (aligning one’s 
purchases with a company that is perceived to align with one’s 
political preferences). 

2.2 Tech Companies and Volunteer-Created 
Content 

A related area of research that also helped motivate this study is 
work that has sought to understand the dependence of 
technology companies on volunteer-created content like 
Wikipedia articles. McMahon et al. [40] showed that Google 
search effectiveness drops substantially when Wikipedia links 
are silently removed from search results, highlighting how 
important Wikipedia is to the success of search engines. Outside 
of Google’s relationship to Wikipedia, Vincent et al. found that 
Stack Overflow and Reddit receive substantial benefits from 
Wikipedia in the form of impactful links and references [56]; 
they showed that these benefits come in the form of both 
increased engagement from users and advertising revenue. 
Although not originally intended as such, these studies can be 
seen as simulating a form of data-related campaign in which 
companies are somehow prevented from using Wikipedia 
content. Such campaigns would be highly unlikely given 
Wikipedia’s content license [58] and other factors, but the design 
of these studies helped to inform our methodological approach 
outlined below.  

2.3 Financial Value of Data 
This work was more generally motivated by a broad body of 
literature seeking to understand the financial value of data and 
highlighting the importance of this understanding. This research 
includes efforts to provide individual users with transparency 
into the value they create, such as the Facebook Data Valuation 
Tool created by González Cabañas et al. [18], as well as efforts to 
broadly understand the value of that data at a macroeconomic 
scale (e.g. the value of Wikipedia to GDP statistics [4]). On the 
policy front, the World Economic Forum has identified data as a 
new “asset class” and suggests that thinking about data 
economics demands a new understanding of the personal data 
ecosystem [49]. 

2.4 Recommender System Manipulation 
Within the recommender system literature, there has been 
research into various ways recommender systems might be 
manipulated. For instance, prior work has examined how 
recommender systems might be “shilled”, i.e. misled so as to 
promote a particular product (e.g. [7, 36]). Like potential strikes, 
shilling attacks are an adversarial approach to manipulating the 
outputs of a recommender. As we explain below, our 
experiments specifically focus on campaigns that withhold data, 
so findings related to shilling are not directly applicable. 
However, in practice collective action participants might be able 
to adopt techniques from shilling, in which case this body of 
literature may be useful to both users and the companies against 
which they seek to gain leverage. 

Recent research from Wen et al. explored recommender 
performance under conditions in which users filter some portion 
of their preference history to increase privacy and/or 
recommender accuracy [57]. Specifically, the authors found that 
users can filter out some of their preference history from the 
recommender while maintaining, or even improving, 
performance for implicit recommendations. This research has 
direct implications for data-related collective action: although 
users might be able to perform a “partial strike” by deleting some 
of their data without suffering decreased performance, these 
partial strikes are unlikely to be very effective, as in some cases, 
partial strikes by all users may improve population-level 
performance. In our experiments, we focus on directly 
simulating conditions in which users withhold all their data, and 
we also explicitly consider both data strikes and traditional 
boycotts. However, exploring the interplay between strikes, 
boycotts and data-filtering tools will be an important area of 
future research that is mutually beneficial to both problem 
contexts. In particular, the data filtering interfaces described by 
Wen et al. could be another outlet for users to actuate data 
strikes. 

3 FRAMEWORK 
As mentioned above, although collective action campaigns that 
use data leverage against technology companies have been 
discussed as a theoretical possibility, they have not been 
characterized in detail. Indeed, in the context of collective action 
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against technology companies, the distinction between data 
strikes, boycotts, and combinations of the two can be unclear. 

In order to simulate data strikes, we need to first concretely 
define data strikes and their relationship to traditional boycotts. 
To do so, we turned to the divergent theoretical underpinnings 
of the boycott and strike terms. In a boycott, participants are 
consumers who cut off the flow of an asset (e.g. money from 
purchases) to a firm. In a strike, participants are laborers who 
stop performing work for a firm. Users of an online platform can 
therefore boycott the platform by refusing to use the platform as 
consumers (e.g. not buying from an e-commerce site, not visiting 
a news site or video site, etc.) and strike against the platform by 
refusing to provide data (e.g. deleting data, preventing the flow 
of new data by using private browsing features or other privacy 
techniques like ad blockers or Mozilla’s new Facebook Container 
[14]). 

In most cases, boycotts against tech companies implicitly 
include a data strike. For instance, users of a video platform like 
YouTube who boycott (refuse to visit the website) are also 
implicitly conducting a data strike by cutting off the flow of 
behavioral data like views, likes, and comments. However, it is 
often possible to participate in a data strike without boycotting the 
platform. This occurs if someone continues to access a website 
but withholds data using privacy-preserving techniques (e.g. 
private browsing), leverages data management options made 
possible through data protection regulation, or – critically for 
our context – refuses to comment on products, rate products, or 
review products. The inverse, a boycott without a data strike, is 
less ecologically valid in the context of our work. Someone who 
boycotts Amazon products is unlikely to submit product reviews 
and ratings. While there are more nuanced situations in which 
this could occur, in this paper, we simulate boycotts in concert 
with a strike. 

To put the nuanced relationship between boycotts and data 
strikes as defined above into better context, we consulted the 
literature to identify the various specific means by which these 
types of collective action campaigns could affect company 
revenue (e.g. [2, 44]). We identified four such pathways to 
revenue impacts: 

 The direct data labor effects (e.g. algorithmic 
performance decreases leading to loss in sales) 

 The indirect data labor effects (e.g. because 
algorithmic performance goes below some threshold, 
users quit the platform leading to loss in sales) [54]. 

 The direct consumer effects (e.g. people stop buying 
products or viewing ads) [32, 42]. 

 The indirect consumer effects (e.g. a large number of 
customers stop buying products or viewing ads, so 
there is a loss of economy of scale advantages) [50]. 

The consumer effects above (which make up consumer 
power) are those that exist in traditional boycotts and have been 
felt by targeted businesses since well before intelligent 
technologies came into common use. The data labor effects 
(which make up data labor power) are specific to collective 
action campaigns against companies that use data-hungry 

intelligent technologies. While a traditional boycott only 
includes direct and indirect consumer effects, a simultaneous 
data strike and boycott includes all four of the above 
components. 

 

Figure 1: Graphical summary of our framework for 
defining data strikes and boycotts. Blue indicates aspects 
on which we focus. 

This simple framework, depicted in Figure 1, provides a 
much-needed lens into the ontology of these types of collective 
action campaigns, but it also highlights that researchers – 
especially those outside a technology platform – can only 
simulate a portion of the effects of data strikes and boycotts. For 
instance, without exact sales numbers, both the direct and 
indirect sales effects are very difficult to study externally. 
Similarly, the indirect long-term effects of reduced recommender 
performance would be difficult to capture both for researchers 
external or internal to a platform (although there is at least one 
case of this being done internally in the search literature using 
an A/B test framework [54]). 

Fortunately, in this paper, we show by focusing on the direct 
data labor effects while still considering the direct consumer 
effects, we can still learn a great deal about collective action 
campaigns that use data leverage. As we discuss below, our 
results support the effectiveness of data strikes, suggesting the 
unique relationship between users and technology companies 
can empower users beyond what would be the case in other 
contexts. We also discuss how our results can be interpreted as a 
lower bound for the effects of data strikes and boycotts against 
tech companies because we cannot measure indirect effects. 

As discussed above, the data strikes we simulate correspond to 

a person “deleting their account” and using the recommender as a 

“guest”, with no account history. Similarly, the boycotts we 

simulate (which include a joint strike) correspond to someone 

deleting their account and not using the system at all. In both 

cases, users not participating in a strike or boycott receive 

recommendations from a model that has been trained without 

strikers’ or boycotters’ data. As we discuss in Limitations, there 

are many other configurations one can imagine - especially those 

related to strikes that do not involve the deletion of past data and 

play out over time - and we believe these to be important 

directions of future work. 
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4 METHODOLOGY 
In this section, we first describe aspects of our methods that 
were consistent across all our experimental configurations. We 
then describe the two broad types of collective action campaigns 
we simulated: “general” groups comprised of randomly selected 
users and “homogenous groups” of users who share some 
characteristic (e.g. power users, fans of comedy movies). 

4.1 Design of Experiments 
In each experiment, we evaluate recommender systems under a 
variety of simulated data strike and boycott conditions. While 
the campaigning groups differ by experiment, the basic methods 
are the same. 

4.1.1 Datasets. Our primary dataset was MovieLens-1M (ML-
1M), which consists of 1 million “1 to 5 star” ratings for 3,706 
movies provided by 6,040 users with self-reported demographic 
data [22]. To better understand performance against large 
recommenders, we additionally performed experiments with the 
much newer MovieLens-20M (ML-20M) dataset [22], which 
contains 20x more ratings but no demographic data about users. 
The MovieLens datasets have been hugely influential and have 
been central to recommender system research for decades [22]. 

4.1.2 Algorithm Choice and Implementation. For each 
experiment, we focus on the well-known and high-performing 
Singular Value Decomposition (SVD) recommender algorithm 
[41]. As validation, we also performed a smaller set of ML-1M 
experiments with an older and mathematically distinct 
algorithm: item-based K-Nearest Neighbors (k-NN) [48] 
adjusting for item and user baselines as described by Koren [33]. 
Both algorithms are implemented in the open-source Python 
library Surprise [27], which we extended for our experiments. 
All code used for our experiments and analyses is available for 
replication and extension on GitHub1. We validated the accuracy 
of the SVD implementation by ensuring results were comparable 
to published results on the ML-1M dataset [26, 34, 38, 46]. These 
successful comparisons are summarized in the linked GitHub 
repository.  

4.1.3 Evaluation Procedure. We evaluated the recommender 
with five-fold cross-validation; for each evaluation fold, 20% of 
total data is available for testing and each rating is tested in 
exactly one fold. While data that is held out because of a 
simulated campaign cannot be used for training, it can be used 
for testing. This means we can consider results from the 
perspective of striking users, who will receive non-personalized 
recommendations which are based on each movie’s average 
rating. This is a standard baseline for producing 
recommendations for users who lack personalized data and it is a 
widely-used way to provide preference information in a non-
personalized fashion (e.g. displaying a movie’s average rating 
instead of predicted rating for a given user). 

4.1.4 Metrics for Evaluating Strikes and Boycotts. When 
evaluating the accuracy of explicit rating predictions for 
recommender systems, one common approach is to measure the 

                                                                 
1 https://github.com/nickmvincent/surprise_sandbox   

error in individual predictions, e.g. through an accuracy metric 
such as root-mean-squared error (RMSE) which was used for the 
well-known Netflix Prize [41], or using information retrieval 
metrics such as gain (NDCG) [5] or precision. Retrieval metrics 
have been favored in recent years because of their ecological 
validity [8, 31] (e.g. “Top Ten Movies for You”). 

 However, these standard metrics only capture performance 
for users who receive recommendations, and do not capture the 
consumer effects of users leaving due to boycotts. Therefore, this 
approach is not well-suited to understand boycotts from the 
perspective of the system owner, because the loss in revenue 
from boycotting users will not be visible in traditional metrics. 
For instance, if we simulate an 80% boycott and measure the 
RMSE of predicted ratings for the remaining 20% of users, the 
change in RMSE does not account for the users who left the 
system entirely. 

To understand the relationship between data strikes and 
boycotts, it is critical to capture both the direct consumer effects 
of boycotting users and the direct data labor effects of striking 
users. To do so, we introduce a new metric, which we call 
surfaced hits. The metric measures the fraction of hits (defined 
as a rating of at least 4.0, as is common in prior work, e.g. [34]) 
across an entire group of users (perhaps all users, or non-
boycotting users). The underlying assumption, that one hit 
corresponds to one unit of value for a recommender system, is 
supported by the widespread use of analytic metrics such as 
click-through-rate in online systems [17]. A perfect algorithm 
will surface all hits, and therefore have a surfaced hits value of 
1.0. This metric can be effectively viewed as a variant of 
precision that sums (rather than averages) across all users and 
sets individual thresholds for precision equal to how many 
positive ratings each user has. More explicitly, 
  for each user u: 
    tu = u’s test ratings 
    nu = number of true ratings >= 4 in tu 
    pu = top nu of tu ordered by predicted rating 
    hu = number of true ratings >= 4 in pu 
surfaced hits = sum({hu}) / sum({nu}) 

As stated earlier, for both data strikes and boycotts combined 
with data strikes, participating users’ ratings are withheld from 
all training data sets. Users who boycott contribute zero hits to 
the numerator of surfaced hits for their test ratings (hu = 0). In 
other words, the surfaced hits value is “penalized” by marking all 
positive ratings for the user as a non-hit. For users in a data 
strike, we included the user’s test ratings in the calculation of 
surfaced hits, but “penalize” via non-personalized 
recommendations (i.e. movie averages) because the user’s 
training data is not available due to the strike. 

Overall, the surfaced hits metric has three useful properties 
for studying data strikes and boycotts. First, when users boycott, 
surfaced hits is reduced proportionally to the number of positive 
ratings in the boycotting group. In other words, if enough users 
boycott to remove half of all the “hits” in the dataset, surfaced 
hits will be reduced by at least half. This allows us to understand 
the effects of strikes and boycotts from within a single reference 
frame. Second, this metric also accounts for differences in user 

1935

https://github.com/nickmvincent/surprise_sandbox


behavior: a user with 1000 hits in their rating history has 10x the 
impact of a user with 100 hits in their history. This captures the 
potentially disproportional economic value of more active users. 
Third, we can calculate surfaced hits for different subsets of users 
(e.g. all users, non-striking users, users similar to striking users) 
to understand the effects of collective action from different 
perspectives. We verified that these metrics perform very 
similarly to well-established list metrics including NDCG and 
precision while at the same time capturing the damage that 
occurs when boycotting users leave a system (see Section 5.3 and 
the code repository).  

4.2 Campaign Configurations 
4.2.1 General campaigns. To get a general understanding of the 
relationship between campaign size and recommender system 
performance, we first simulated a series of “general” campaigns 
with random user selection. In these campaigns, the 
demographic make-up of the groups approximates the 
distribution of all users. We selected a sequence of 16 different 
group sizes ranging from 0.01% of users to 99% of users. For each 
group size, we randomly selected a group of that size to 
participate in the campaign. To reduce noise associated with 
different random configurations, we repeated each of these 16 
experiments 250 times with a new random user sample for the 
ML-1M dataset and 40 times for the ML-20M dataset. 

4.2.2 Homogeneous campaigns. We also simulated campaigns 
executed by “homogeneous” groups defined by shared patterns 
in rating behavior or shared demographic information. More 
specifically, we created five types of homogenous campaigns: 
campaigns by “fans” of specific movie genres, campaigns by 
three categories of demographic groups, and campaigns defined 
by rating behavior. We created groups of “fans” for each movie 
genre by identifying all users who rated at least ten movies of 
that genre and have an average rating for the genre of four or 
higher. To simulate demographically-defined campaigns, we 
created groups based on user-reported demographics, 
specifically male/female, age bracket, and occupation. For rating 
behavior campaigns, we created campaigns for “power users,” 
defined as the top 10% of raters and “low frequency” users, the 
bottom 10% of raters.  

For each of the five types of homogeneous groups, we 
simulated campaigns in which 50% of users within a given group 
participated. For example, we simulated campaigns with groups 
such as 50% of all women, or 50% of all comedy movie fans, and 
so on. Importantly, 50% participation allows us to simulate what 
happens to similar users who do not participate. In other words, 
if some women participate in a data strike, what happens to 
women who do not?  We also viewed 50% group participation as 
more realistic than full participation.  

Our homogenous experiments focus on the data labor effects 
of data strikes. The consumer effects of a homogenous boycott 
scale with the size of the boycott as measured by the number of 
positive ratings, and as we show in our general campaign 
experiments, this effect is substantially larger than that of 
strikes, but this does not negate a strike’s value. 

 For each homogenous campaign configuration, we 
performed experiments with 50 sampled groups. We also 
compared the observed campaign effects to the expected effects 
for a random campaign with the same number of ratings. In 
order to obtain a relatively simple estimate of the “expected” 
effect of a data strike of some size, we computed a quadratic 
interpolation of our results shown in Figure 2. Our homogeneous 
experiments only consider the ML-1M dataset due to the lack of 
demographic information in ML-20M. 

5 RESULTS 
In this section, we first describe the relationship we observed 
between recommender performance and campaign size in the 
case of general (random users) collective action campaigns, 
focusing on comparing pure data strikes to strikes coupled with 
traditional boycotts and examining the overall effectiveness of 
campaigns across datasets. Next, we describe the key findings 
from our homogeneous group experiments, focusing on the 
finding that unique homogenous groups, defined 
demographically or behaviorally, can exert their data labor 
power to disproportionately affect similar users, indicating the 
potential for data strikes that target specific preference spaces to 
boost their effectiveness. 

This section uses the surfaced hits metric, described above. 
We focus on the popular SVD algorithm because the item-based 
k-NN algorithm behaved similarly in our initial experiments (see 
GitHub repository). 

5.1 General Campaign Experiments 
We begin by examining the effect of general data strikes and 
boycotts (i.e. with random users) from the perspective of the 
system owner (e.g. Google, Facebook, operators of MovieLens). 
Next, still focusing on the perspective of system owners, we 
specifically zoom in on performance changes relative to un-
personalized results.  

Figure 2 shows the effect of data strikes (blue line) and joint 
data strikes and boycotts (green line) on surfaced hits (y-axis) 
across the system for both ML-1M (left column) and ML-20M 
(right column). As a reminder, a value of 1.0 would correspond 
to an algorithm that produces perfect ranked lists for every user. 

These plots include dotted horizontal lines that provide 
important context: the black line shows performance of SVD 
with full access to the dataset (which gives 77.4% of hits), the red 
line shows the results of “MovieMean,” which gives completely 
un-personalized ratings (movies are ranked in order their mean 
rating) and the gold line shows the results of completely 
randomly ranked lists (i.e. worst-case performance). Note the 
high number of hits associated with random lists: this is because 
MovieLens users tend to give movies high ratings, so when 
evaluating even random lists many of the items suggested for a 
given user will be hits. We address this phenomenon below by 
focusing not only on raw changes in surfaced hits, but also on 
performance relative to un-personalized performance, i.e. we 
zoom in on performance change between the black and red lines. 
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Figure 2: The relationship between campaign size and surfaced hits. Surfaced hits include all users (including strikers and 
boycotters), and therefore reflect the perspective of the system owner. Dotted horizontal lines provide comparisons: black 
(uppermost) shows fully personalized SVD, red (middle) shows un-personalized results, and gold (bottom) shows random 
results. 

The most significant trend in Figure 2 is that boycotts are 
substantially more effective than data strikes. For instance, while 
a 30% boycott of ML-1M reduces hits to from 77.4% to 53.9%, a 
30% data strike only reduces hits by 0.7% to 76.7% (ML-20M, 
right column, shows a similar trend). Furthermore, for both 
datasets a boycott of about 20% of users reduces surfaced hits to 
the amount expected for completely randomized 
recommendations. This result means that at first glance, the loss 
in hits caused by users who leave the system strongly outweighs 
the loss in hits from reduced algorithmic performance. 
Importantly, this finding does not fully explicate the potential of 
data strikes, as we will describe below. 

We note that the gaps in Figure 2 between un-personalized 
results (red lines) and fully personalized results (black lines) 
appear to be small and correspond to a loss of 1.4% of surfaced 
hits for ML-1M and 3.3% for ML-20M. This reflects the non-linear 
value of recommender algorithms; the small margin between un-
personalized and personalized algorithms corresponds to a large 

amount of value for a recommender system operator. For 
example, in Netflix’s case, the margin between un-personalized 
algorithms and personalized algorithms accounts for a 2-4x 
increase in engagement with recommended items and $1 billion 
in revenue [17] (see below). Thus, we now specifically focus on 
the change in performance relative to un-personalized results to 
inspect how data strikes leverage direct data labor effects to 
lower recommendation performance towards un-personalized 
levels. 

Figure 3 zooms in on surfaced hits during a data strike using 
the same y-axis as Figure 2.  Again, the black horizontal line 
marks personalized performance and the red horizontal line 
marks un-personalized performance. Additionally, in Figure 3 
the horizontal cyan line shows the performance of simple item-
based k-NN (which we evaluated with full access to each 
dataset), a technique that was introduced in 1999. This context 
shows the ability of campaigns to essentially set recommender 
system performance “back in time”. 

 

 

Figure 3: The relationship between data strike size and surfaced hits. Dotted horizontal lines provide comparisons: black 
(top) shows fully personalized SVD, cyan (middle) shows item-based k-NN (1999), and red (bottom) shows un-personalized 
results.  
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In Figure 3, the potential power of data strikes becomes 
clearer. The left side of the figure shows that campaigns had 
substantial effects on recommender performance for ML-1M 
relative to non-personalized ratings. For instance, a strike with 
30% of users (which is a realistic size based on research on 
political consumption; see Related Work) degrades performance 
such that users lose roughly half the benefits of personalization.  
These results also illustrate the power of collective action to 
potentially negate decades of algorithmic advances. Looking 
again at MovieLens-1M, a strike by 37.5% of users can roll back 
hits to a level equivalent to the classic item-based k-NN 
algorithm introduced in 1999 [48] (cyan dotted line in Figure 3).  

The ML-20M results (right column), however, suggest a 
somewhat more complicated story for recommenders using 
larger datasets. When the dataset size is increased by a factor of 
20, a strike by the same percentage of users becomes somewhat 
less effective. If 30% of ML-1M strike (1800 users), we see a 50.2% 
reduction in the benefits of personalization, but if 30% of ML-
20M strike (41400 users), it would only cause a 37.0% reduction. 

A likely explanation of why the relationship between strike 
size and strike power differs between ML-1M and ML-20M lies in 
the two effects of a data strike, the effect on the strikers 
themselves and the effect on non-strikers. The first effect 
captures how the removal of the strikers’ data lowers 
performance of the recommender for non-strikers (i.e. the ability 
of strikers to affect the experience of non-strikers). While we see 
similar directional relationships between ML-1M and ML-20M, 
this effect is more pronounced for ML-1M. For instance, at 30% 
strike participation, we see a 25.4% reduction in personalization 
for non-striking ML-1M users but just a 4.2% reduction in 
personalization for ML-20M (analysis in GitHub repo).  ML-20M 
does not see an equivalent reduction in personalization for non-
strikers until strike participation rates hit 77%. The explanation 
for this difference is likely straightforward: ML-20M has more 
redundant encodings of preference patterns due to its sheer size, 
so an equivalent percentage of strikers cannot have as much of 
an effect on the experience of non-strikers. 

The second factor driving the strike results is the fact that, 
during a data strike (rather than boycott), by definition, striking 
users can still use the system. Because these users must still 
receive a ranked list of items (e.g. to power a Netflix-style 
interface), what used to be a personalized ranked list must now 
become a non-personalized ranked list. As noted above (Section 
4.1.3), we implement this non-personalized ranked list in the 
most ecologically valid way possible: using the average movie 
rating from other users (item mean). As such, for each new user 
who strikes, the recommender will inch towards item mean by 
default, regardless of the effect on non-striking users. In other 
words, even in the face of large amounts of training data, users can 
hurt the system by refusing to provide the input data needed to 
make predictions for themselves. 

Finally, we reiterate that evidence from industry suggests 
that in commercial systems, a change in surfaced hits has a non-
linear value to recommender operators. In other words, the 
visually-small performance change between the red and black 
horizontal lines in Figures 2 and 3 may have an outsized effect 

on platform revenue. As mentioned before, the small surfaced 
hits improvement due to personalization may correspond to a 2-
4x increase engagement with recommended items in other 
contexts [17]. Similarly, in 2010 YouTube published findings that 
suggest recommendations add substantial value: almost 30% of 
video views came from their recommender system and the 
recommender was the main source of views for most videos [59]. 
An industry report from consulting company McKinsey 
estimates that recommender systems account for 35% of Amazon 
purchases and 70% of Netflix views [24]. Taken together, this 
means that in many contexts, the revenue effects of data strikes 
seen above would be magnified relative to their appearance in 
the figures. 

5.2 Homogeneous Campaign Group 
Experiments  

In our homogenous campaign experiments, we examine what 
would occur if a demographics- or taste-defined group engaged 
in a data strike (e.g. women or documentary fans). Specifically, 
for the reasons defined above, we simulate the effects of 50% of 
the group striking, examining the impact on the remaining 50% 
in the group, as well as on the recommender overall. We use the 
term Similar Users to describe non-striking members of the 
striking campaign group (e.g. non-striking women in a strike by 
women) and Not Similar Users for all other non-striking users 
(e.g. non-women in a strike by women). Then, we define the 
Similar User Effect Ratio as the percent change in surfaced 
hits for Similar Users divided by the percent change in surfaced 
hits for Not Similar Users. One challenge with analyzing these 
homogenous boycotts is that the various groups are very 
different in size (see Table 1). Therefore, this set of analyses 
focuses specifically on percent change in surfaced hits, which 
partially mitigates the challenge in comparing data strikes by 
groups that are very different in size. Furthermore, when looking 
at the aggregate effects of homogeneous campaigns, we 
specifically look at the perspective of non-participating users, as 
both the direct consumer effects and the effects from striking 
users seeing un-personalized recommendations are functions of 
campaign size. 

The results from our homogenous campaign experiments 
show that data strikes may be especially effective at impacting 
recommendations within targeted topical domains. Specifically, 
we observe that if homogeneous groups of people strike, non-
striking users that share the same characteristic as the 
homogenous striking group will experience larger reductions in 
recommender accuracy than other users. For example, striking 
horror movie fans can make a large movie recommender suffer 
for other horror fans, potentially giving a competing movie site 
an opening. A secondary, related observation from these 
experiments, which we return to at the end of this section, is 
that homogenous groups’ aggregate effects on non-participating 
users are not consistent: some groups have an outsized aggregate 
effect relative to their size, and vice versa.  
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Table 1: Examples of homogenous groups, the number of 
ratings in each group, percent change in surfaced hits, and 
the Similar User Effect Ratio. 

Name 
# 
Ratings 

% change 
surfaced 
hits, 
Similar 
Users 

% change 
surfaced 
hits, Not 
Similar 
Users 

Similar 
User 
Effect 
Ratio 

men 753769 -0.71 -0.64 1.11 

women 246440 -0.38 -0.09 4.24 

fans of 
horror 

48464 -0.24 -0.03 7.16 

under 18 27211 -0.27 -0.03 9.02 

25-34 395556 -0.38 -0.3 1.28 

56+ 38780 -0.18 -0.03 6.97 

artist 50068 0.15 -0.07 -2.26 

power users 381407 -0.76 -0.45 1.71 

Table 1, which includes a variety of example groups, 
highlights the primary finding that some groups are especially 
effective at lowering performance for Similar Users compared to 
other users. For instance, looking at Table 1, we see that when 
half of women strike, surfaced hits decreased for non-striking 
women by 0.38% while surfaced hits decreased for non-women 
by 0.09%. Therefore, the Similar User Effect Ratio is 0.38 / 0.09 = 
4.24. This effect is exaggerated even further in the case of the 
“under 18” group, which has a Similar User Effect Ratio of 9.02. 
On the other hand, the “25-34” age group has a more or less 
“flat” ratio of 1.28, and the same is the case for men. 

It is clear from Table 1 that some homogenous groups are 
able to “punch above their weight” with respect to affecting the 
experience of non-striking users, at least those within their 
homogenous group. This is particularly important with respect 
to large recommenders, which we saw above are more robust to 
this component of the data strike effect (the effect of strikers on 
the experience of non-strikers). Regardless of the scale of data 
resources available to a recommender, it appears that 
recommendation quality for some users may always be 
vulnerable to targeted data strikes by Similar Users. 

One hypothesis that explains why some data strikes hurt 
Similar Users more than other users lies in a holistic view of the 
user preference space. If a group of users has substantial 
uniqueness– or more specifically, mathematical independence – 
in their preferences when compared to other groups, a campaign 
by that group is less likely to hurt users not in that group. At the 
extreme, a group whose preferences are completely orthogonal 
to every other group may be able to execute a campaign without 
substantially affecting personalization for any other group (one 
realistic example might be groups based on language 
proficiency).  

To understand this relationship, we compared a group’s 
Similar User Effect Ratios from Table 1 to a measure of 
preference independence based on overlap in rate/no-rate 
behaviors. To calculate preference independence, we first create 

a vector with a column for each movie (3706 columns) and value 
equal to the proportion of users in the group who have rated the 
movie (i.e. the group implicit rating vector). A group’s 
preference independence is the cosine distance of that group’s 
vector to the similarly calculated vector for the all groups (i.e. 
the centroid). We focus on groups with over 20k ratings, 
ignoring the six very small groups for which Similar User effects 
are extremely noisy. 

 

Figure 4: Scatterplot showing how homogeneous data 
strikes (with > 20k ratings) affect similar users differently 
than the general population. Along the x-axis, groups are 
organized by increasing uniqueness, defined by the cosine 
distance between the group implicit rating vector for the 
group and the general population. The y-axis shows the 
Similar User Effect Ratio. Gray dotted line shows ratio of 1. 
Pearson correlation is 0.55. “X” markers indicate labeled 
examples. 

Figure 4 shows a full scatterplot of Similar User Effect Ratio 
for all groups with over 20k ratings. On the x-axis, we plot 
preference independence as defined above and on the y-axis, we 
plot Similar User Effect Ratio (note that negative values 
correspond to strikes that improve surfaced hits for Similar 
Users). Our experiments suggest a moderate positive relationship 
between a group’s preference independence and the effect of a 
strike on non-participating Similar Users (Pearson’s r = 0.55, p < 
0.001), although this is likely driven by a non-trivial number of 
strong outliers (e.g. “under 18”, “fans of horror” in Figure 4) 
given the Spearman correlation (r = 0.18, p > 0.05) is not 
statistically significant. The full interplay between preference 
independence and strike effectiveness is a fertile ground for 
research, and future work could more closely study how 
preference spaces might be operationalized for the purpose of 
data strikes. 

The outsized Similar User effects for many homogenous 
strikes point to both strategic advantages and effects that may 
limit adoption. For example, if women data strike against a 
company to affect some lasting change (e.g. ending 
discriminatory practices, launching profit sharing), a 
homogenous strike that focuses on recruiting other women may 
be especially effective, with large Similar User strike effects 
potentially driving women away from the company to 
competitors and substantially reducing company revenue. 
However, these effects may decrease strike adoption in some 
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contexts. For instance, returning to a strike by women against a 
major tech company, imagine that the tech company provides 
important services to large populations (e.g. online shopping in 
areas with few brick-and-mortar stores, low-cost communication 
in areas without similarly priced options). Many potential 
participants may be unwilling to participate in a campaign that 
will disproportionately damage these services for other women, 
thus limiting the adoption of homogenous campaigns in certain 
contexts. 

A related secondary observation from these experiments is 
that homogenous groups have varying effects on all non-strikers 
(rather than just Similar Users) compared to the “expected” 
effects based on their number of ratings (determined by a 
quadratic interpolation of our general results, as described 
above). In other words, homogenous strikes vary in their ability 
to “punch above their weight” with respect to their capacity to 
decrease performance for all non-participating users: In 34 of 50 
homogeneous groups, surfaced hits for non-participating users 
decreased more than would be expected for a random group with 
an equal number of ratings. Ratios of observed to expected effect 
ranged from 0.52 for the group of users whose occupation was 
“retired” to 1.84 for “power users”, with other examples 
including a 0.7 ratio for “fans of comedy” and a 1.35 ratio for 
“fans of fantasy” (see GitHub repository for more details). 

Based on this secondary finding, it seems that homogenous 
campaigns will not always be effective at damaging the general 
population of users because some groups are under-performing, 
and even over-performing groups are limited by size in their 
ability to affect the general population. However, organizing 
campaigns with preference spaces in mind (i.e. campaigns that 
are homogenous in topical preferences) likely will be effective 
and, critically, may provide a way to challenge recommenders 
when the number of strikers is not sufficient to cause more 
general damage to performance.  

5.3 Generalizing Beyond “Surfaced Hits” and 
SVD 

In presenting our results, we have focused on our “surfaced hits” 
metrics. However, we also computed the more typical 
recommender systems evaluation metrics of RMSE, NDCG with 
all items, NDCG@k, Precision@k, and Recall@k for k = {5, 10}. 
We additionally calculated these metrics when only including 
“long-tail” (i.e. unpopular) movies. All these metrics produce 
similar results regarding the effects of various data strikes 
configurations, although they did not afford us the ability to 
analyze boycotts. The full dataset of results is available in our 
GitHub repository. We also note that in our early experiments 
using item-based k-NN, ML-1M, and traditional metrics, we 
observed very similar general trends, e.g. the effect of data 
strikes on the NDCG@10 of an item-based k-NN recommender 
mirrored effects on other traditional metrics for SVD. 

6 DISCUSSION 
 In this paper, we have taken the previously hypothetical notion 
of data strikes, identified a wide variety of realistic campaign 

configurations (including when they are combined with 
traditional boycotts), and simulated the effect of these 
configurations in the recommender systems domain using best-
practice evaluations. Comparing these campaign configurations 
and looking specifically at direct effects, we find that while the 
consumer power of boycotts still substantially outweighs the 
data labor power of data strikes, data strikes represent a 
potentially powerful new form of leverage. Moreover, we saw 
that strike organizers might specifically target preference spaces 
within a recommender to achieve especially effective data strikes 
within those spaces.  Below, we discuss some of the more 
general implications of these results. 

6.1 Barriers to Entry vs. Impact 
Our results suggest that collective action organizers targeting 
companies that operate intelligent technologies like 
recommender systems have more options than is the case in 
traditional collective action. Specifically, these organizers have 
the ability to optimize for impact or for barrier to entry. Our 
results show that boycotts have a larger impact, but they require 
all participants bear the cost of not using a potentially valuable 
service. Strikes, on the other hand, allow users to continue to 
benefit from the use of technology platforms without completely 
losing the ability to collectively bargain. Historically, 
participation in political consumption has been easier for 
affluent groups [32] - data strikes represent an approach that 
may be substantially more accessible. Notably, our results 
suggest that new technologies focused on privacy (e.g. initiatives 
from Mozilla [14]) and online political consumption (e.g. recent 
work from Li et al. [39]) are a promising approach to 
empowering more individuals to participate in collective action. 

This notion of low-barrier-to-entry collective action echoes 
early research on digital activism by Earl and Kimport, who 
argued that the web reduces costs for participating in protest 
behavior like boycotts, petitions, and email campaigns [9]. 
Specifically, data strikes can be seen as another tool in the 
toolbox of low-barrier-to-entry techniques, offering an additional 
avenue for people to take action against technology companies. 
However, we also observed that this increased accessibility is 
coupled with reduced power.  

6.2 Towards a Holistic View of Data Strikes 
Although our results give us important insight into the potential 
impact of data strikes and boycotts, our work likely only 
captures a portion of the real-world effect of a collective action 
against an intelligent technology. In particular, as is discussed in 
the Framework section, we cannot measure directly the indirect 
effects of traditional boycotts or data strikes. This means that our 
results should be interpreted as a lower bound on the effects of 
any data labor-related collective action campaign. 

A related point that emerges from our results viewed with 
the lens of our framework is that collective action against 
technology companies will largely be more powerful than 
collective action against non-technology companies. The effect of 
a boycott against, for instance, a clothing company, would 
largely not include either direct or indirect loss of data labor 
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value (excluding edge cases like long-term sales and marketing 
data). Since our results suggest that these factors will be non-
trivial in most tech company boycotts, a user boycotting a tech 
company is likely to have a greater effect on revenue than would 
be expected in a boycott with a more traditional type of target. 
We expand on these power dynamics further below. 

6.3 The Power of Algorithms vs. The Power of 
Public Data 

Outside of the context of boycotts and data strikes, our results 
can also be viewed as a means to better understand the power of 
data provided by the public relative to the power of algorithms. 
Namely, we observed that moderately-sized strikes can bring 
recommender accuracy down to the levels of early recommender 
systems from 1999. These results, along with the work of 
McMahon et al. [40] and others [18, 23], emphasize the data 
leverage that the public has in its relationship with data-hungry 
intelligent technologies and the companies that operate them. 
While the public perception of intelligent technologies like 
recommender systems is that they are largely the 
accomplishment of tech companies and the computer scientists 
they employ, these technologies are in fact a highly cooperative 
project between the public and companies. Without the 
companies and computer scientists, the intelligent technologies 
do not exist. But the same is also true for the public’s 
contributions of data (i.e. data labor). This implies a much 
different power dynamic than is currently assumed by most 
people on both sides of this relationship. 

6.4 Limitations 
This work has several limitations not yet discussed above that 
should be highlighted. First and foremost, this paper focused on 
recommender systems which, while a business-critical family of 
intelligent technologies, is only one family of intelligent 
technologies that could be vulnerable to collective action 
campaigns. Future work should seek to replicate our research for 
other intelligent technologies, for instance search ranking 
algorithms (e.g. [45]), “newsfeed”-style technologies (e.g. [43]), 
traffic prediction (e.g. [21]), and wi-fi geolocation (e.g. [19]).  

As noted above, we simulate boycotts in concert with strikes 
owing to that being the more ecologically valid choice in the 
context of our study. We note that one could imagine boycotts 
coupled only with partial strikes: e.g. someone who boycotts a 
system but does not delete their past ratings. Exploring these 
types of configurations - and longitudinal considerations in 
general - is an important direction of future work. 

While we used best-practice evaluation techniques in the 
recommender systems community [8, 22, 46], these techniques 
have several limitations that also affect the large literature of 
recommender systems research that employs them. In particular, 
we considered only explicit ratings and did not consider implicit 
preferences expressed through user behavior (which are not 
available in the MovieLens dataset). We also only considered our 
recommenders in an offline environment (as opposed to in a live 
experiment). Finally, to gain more insight into the nuances of 

recommenders, it will be valuable explore other recommender 
system datasets, particularly datasets from industry contexts. 

Another important limitation is that in our experiments, we 
had to operationalize male/female as a binary variable due to the 
data available in the MovieLens dataset. Similarly, we were not 
able to test other types of demographic groups (e.g. LGBT 
communities, political groups). Relatedly, our use of the term 
“homogenous” refers to a specific demographic or topical 
dimension; it does not consider the diversity within our 
“homogenous” groups, and doing so would be a fruitful area of 
future work. 

Finally, this paper focused on understanding the effect of 
collective action campaigns of various sizes and types, but it did 
not consider the collective action problem of organizing or 
actuating these campaigns. Fortunately, this problem maps to a 
deep body of work within social computing and related fields on 
sociotechnical strategies for motivating collective action online 
(e.g. [35, 47]). An obvious direction of future work in this 
research space involves building tools to organize data strikes 
and boycotts that leverages this body of work (either using 
GDPR or restricting new data collection). Recent research 
suggests that user-friendly tools like browser extensions may be 
an effective approach for making collective action campaigns 
easy to join and conduct [39]. 

6.5 Potential Negative Impacts 
In response to calls for the computing community to better 
engage with the negative impacts of our research [29], we wish 
to highlight two major concerns with this work. First, we 
emphasize that our findings may be equally useful to organizers 
of campaigns as to they are to companies interested in 
mitigating the effectiveness of such campaigns. Relatedly, it is 
entirely possible that using a simulated data strike methodology, 
companies could identify which groups of users are and are not 
“useful to the algorithm”, i.e. they could rank groups based on 
their utility to some intelligent technology and use this ranking 
to justify ignoring the interests of some groups. If this occurred 
along demographic lines, this could lead to troubling societal 
outcomes, e.g. if majority groups can collectively bargain with 
tech companies and minority groups cannot. Technologies to 
organize data strikes and boycotts could help mitigate this issue 
by recruiting users from a variety of demographic groups 
(perhaps, guided by future work, specifically targeting some 
preference space like Comedy movies or electronics products). 
Our results suggest that this should be a priority in the design of 
these technologies. 

Moreover, our ability to perform simulated campaigns was 
predicated on the public availability of the MovieLens dataset. 
Substantially more accurate simulations could be run using 
much richer datasets available only to corporations, so in any 
“data strike simulation arms race”, there will be a clear 
advantage for corporations. This means that corporations may be 
able to prepare models in advance to counteract boycotts or 
strikes. This might be mitigated through crowdsourced data 
collection or other means, a ripe area for future work. 
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7 CONCLUSION 
In this paper, we have done the work of advancing the notion of 
data strikes from abstract discussion point to concrete 
campaigns that can be simulated. Through these simulations, we 
provided critical early empirical information to help advance the 
discussion around data strikes. In doing so, we first detailed a 
framework that describes the key elements of collective action 
campaigns that action data leverage (i.e. data strikes and 
traditional boycotts, which respectively leverage data labor 
power and consumer power). We found that these campaigns can 
be effective, with relatively small strikes wiping away significant 
portions of the value of recommender systems relative to simpler 
techniques. However, as datasets grow larger, data strikes 
become less effective, and strategies that target specific groups of 
users or preference spaces may become necessary. We discussed 
the implications of our results for those seeking to organize data 
strikes and companies seeking to understand potential effects on 
their core functionality.  
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