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ABSTRACT 
Wikipedia-based studies and systems frequently assume that 
no two articles describe the same concept. However, in this 
paper, we show that this article-as-concept assumption is 
problematic due to editors’ tendency to split articles into 
parent articles and sub-articles when articles get too long for 
readers (e.g. “Portland, Oregon” and “History of Portland, 
Oregon” in the English Wikipedia). In this paper, we present 
evidence that this issue can have significant impacts on 
Wikipedia-based studies and systems and introduce the sub-
article matching problem. The goal of the sub-article 
matching problem is to automatically connect sub-articles to 
parent articles to help Wikipedia-based studies and systems 
retrieve complete information about a concept. We then 
describe the first system to address the sub-article matching 
problem. We show that, using a diverse feature set and 
standard machine learning techniques, our system can 
achieve good performance on most of our ground truth 
datasets, significantly outperforming baseline approaches.  
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INTRODUCTION 
Over the past decade, Wikipedia has become one of the most 
valuable datasets for computing research and practice. As an 
object of analysis in social computing, Wikipedia has shed 
new light on computer-mediated communication and 
collaboration (e.g. [28–30,54]) and has helped investigate 
cultural perspectives in user-generated content (e.g. 
[11,22,45]), among many other uses. In the artificial 
intelligence domain, Wikipedia has proven equally 
beneficial: it helps to power technologies ranging from 

semantic web engines (e.g. [2,49,55]) to natural language 
understanding systems (e.g. [16,37,52]). 

A key assumption in many Wikipedia-based studies and 
systems is that there is a one-to-one mapping between a 
concept and the Wikipedia article that describes the concept. 
This assumption, which we call the article-as-concept 
assumption, supposes that the entire description of a given 
concept in a given Wikipedia language edition can be found 
in a single Wikipedia article. For example, under the article-
as-concept assumption, the entirety of the English 
description of Portland, Oregon should be in the “Portland, 
Oregon” article, and that article alone. 

In this paper, we problematize the article-as-concept 
assumption and show that while this assumption is valid in 
many cases, it breaks down for a particular class of high-
value concepts: concepts whose articles become too long. 
The Wikipedia community strongly encourages editors to 
divide lengthy articles into multiple articles out of a desire to 
facilitate readability, maximize ease of editing, sustain 
contributions, and make Wikipedia suitable for diverse 
technological contexts (e.g.  slow connections) [57]. 
According to these guidelines, the original article (parent 
article) should contain a summary of the concept, and each 
split-off article (sub-article) should have a full treatment of 
an important subtopic. For example, consider the case of the 
Portland, Oregon concept. In the English Wikipedia, there is 
an article titled “Portland, Oregon” which contains a 
summary of the content about Portland. However, Wikipedia 
editors have moved more detailed content from this parent 
article into multiple sub-articles, including “History of 
Portland, Oregon”, “Downtown Portland”, “Tourism in 
Portland, Oregon” (among over a dozen other sub-articles). 
The sub-articles contain the bulk of the information about the 
aspects of Portland that they describe, and the parent article 
only contains brief summaries of this information. 

Concepts that violate the article-as-concept assumption 
attract a significant share of reader interest in Wikipedia. A 
substantial percentage of the most-viewed articles in large 
language editions – e.g. “World War II” in English, 
“Deutschland” in German, “France” in French – have large 
numbers of sub-articles. Indeed, as we will show below, 71% 
of the page views to the 1000 most-viewed articles in the 
English Wikipedia belong to articles that have at least one 
sub-article. Moreover, among this set of 1000 most-viewed 
articles, the average number of sub-articles is 7.5. 
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The separation of content about a single concept across 
multiple articles – especially for high-value concepts – is 
problematic for a wide swath of Wikipedia-based studies and 
systems. Consider the case of an intelligent technology that 
requires a text- or link-based encoding of the concept 
Portland, Oregon – e.g. one of the many prominent 
Wikipedia-based semantic relatedness algorithms 
[16,34,37,46,52] – or a multilingual Wikipedia study that 
compares the information about Portland contained in 
different language editions of Wikipedia (e.g. 
[5,11,18,22,33,36]). In both cases, simply adopting the 
article-as-concept assumption would result in false 
conclusions and missed opportunities. For the intelligent 
technology, large amounts of text in the sub-articles of 
Portland would be missing from a bag-of-words model (e.g. 
[16,34]) and relationships between Portland’s sub-articles 
and related concepts would be omitted in any graph-based 
model (e.g. [21,37]). With regard to the multilingual 
Wikipedia study, while the English Wikipedia may split 
content about the Portland, Oregon concept into more than a 
dozen sub-articles, the Spanish edition may split its 
corresponding article into four sub-articles, and another 
language edition another may have no sub-articles at all. To 
a multilingual study or system that ignores sub-articles, it 
could appear as if the language editions with the fewest sub-
articles had the most content about this concept whereas the 
opposite is likely true.  

To address the serious challenges associated with sub-
articles and their violation of the article-as-concept 
assumption, this paper introduces the sub-article matching 
problem. The sub-article matching problem describes the 
following task: for a potential parent article p in a given 
language edition, accurately identify all corresponding sub-
articles ps in the same language edition. For instance, solving 
the sub-article problem involves connecting the parent article 
“Portland, Oregon” with its “History of Portland, Oregon” 
and “Portland Fire & Rescue” sub-articles (and others), and 
repeating for all articles in multilingual Wikipedia. As we 
will show, this will mean determining whether millions of 
potential sub-articles are indeed sub-articles of 
corresponding parent articles. 

In addition to defining and motivating the sub-article 
matching problem, this paper presents the first system that 
addresses the problem. We collected sub-article ground truth 
corpora consisting of pairs of parent articles and candidate 
sub-articles (<p,pcs> pairs) in three languages (English, 
Spanish, and Chinese). We then used that data to train a 
model that can achieve 84% classification accuracy on 
average, outperforming baseline approaches by 17%. 
Further, we show that our model works best on the articles 
that attract the most reader interest: it outperforms baseline 
accuracy by 50% on a dataset consisting only of high-interest 
articles.  

                                                             
1 http://z.umn.edu/WikiSubarticles 

The model’s performance is achieved through the use of 
heterogeneous features ranging from Wikipedia editing 
practices to the output of semantic relatedness algorithms. 
Moreover, we were careful to avoid language-specific 
features in our model, meaning that the model should work 
equally well in most (if not all) major language editions. 

This paper also situates the challenges to the article-as-
concept assumption in a broader theoretical framework. 
Specifically, we discuss how this issue can be interpreted as 
a human-machine variation of author-audience mismatch 
[26], which was originally conceptualized for human authors 
and human audiences. We argue that the author-audience 
mismatch framework – adapted to machine audiences and 
human authors – is useful for understanding a growing 
number of problems associated with intelligent technologies’ 
use of semi-structured peer-produced datasets like 
Wikipedia. 

Finally, in the interest of furthering progress on the sub-
article matching problem, this paper operationalizes recent 
calls for open data and open code in the social computing 
community (e.g. [39,63]). We have made our full sub-article 
ground truth dataset publicly available and we have released 
our entire sub-article model as an extension to the WikiBrain 
Wikipedia software library [47]1. This will make our model 
immediately usable by Wikipedia researchers and 
practitioners. Additionally, including our model in 
WikiBrain will also allow researchers to make 
straightforward comparisons with our model’s performance 
and, hopefully, improve upon it. 

In summary, this paper makes the following contributions: 
1. We identify and problematize the article-as-concept 

assumption, discuss its risks for Wikipedia-based 
studies and systems, and show that the assumption 
fails for a large percentage of high-interest concepts. 

2. We introduce the sub-article matching problem, the 
solution to which is necessary to avoid adopting the 
article-as-concept assumption in Wikipedia-based 
studies and systems. 

3. We describe the first model to address the sub-article 
matching problem. We show that our model was able 
to use a variety of heterogeneous features to achieve 
performance significantly better than baseline 
approaches on most ground truth datasets. 

4. We have released our model in the form of a software 
package to enable researchers and developers to 
immediately begin building systems and running 
studies that do not adopt the article-as-concept 
assumption. 

5. Additionally, we have provided the first three ground 
truth datasets for the sub-article problem. The datasets 
can serve as benchmarks to help the community make 



progress towards a complete solution to the sub-
article matching problem. 

6. We discuss how the issues with article-as-concept 
assumption can be understood as a human-machine 
version of author-audience mismatch, a framework 
that may describe a growing number of challenges in 
artificial intelligence and fields related to semi-
structured peer-produced datasets 

 
Below, we first address related work. We then discuss our 
efforts to build reliable ground truth datasets for the sub-
article matching problem. Third, we address how we 
constructed our classification models and interpret model 
performance. Finally, we highlight the theoretical 
implications of our work associated with author-audience 
mismatch. 
 
RELATED WORK 
The primary motivation for this work arises out of research 
that has implicitly adopted the article-as-concept 
assumption. This research occurs in many areas of human-
computer interaction, artificial intelligence, and related fields 
and can broadly be divided into work that (a) studies 
Wikipedia, (b) leverages Wikipedia to seed “knowledge 
graph”-like structures and (c) utilizes Wikipedia as a corpus 
for intelligent technologies. In the following, we summarize 
these three bodies of literature and discuss how addressing 
the sub-article matching problem could lead to 
improvements in each of them. 

Wikipedia-based Studies  
The article-as-concept assumption applies to the many 
studies which suppose that all communication and 
collaboration around a concept is associated with a single 
article (in a given Wikipedia language edition). One large 
area of Wikipedia-related literature for which the article-as-
concept assumption is particularly problematic is the work 
that examines the similarities, differences, and interactions 
between the different language editions of Wikipedia (e.g. 
[1,5,11,18,22,33,36,53,62]). In this line of research, under 
the prevailing article-as-concept assumption, sub-articles are 
mistakenly treated as separate concepts. This can result in 
mistaken conclusions about a key variable of interest in this 
literature: the similarities and differences in the articles about 
the same concept in different language editions, e.g. “United 
States” (English) vs. “Estados Unidos” (Spanish) vs. “Stati 
Uniti d'America” (Italian); or “Portland, Oregon” (English) 
vs. “波特蘭_(俄勒岡州)” (Chinese).  

Indeed, the most direct motivation for the research in this 
paper emerges from a line of work in the multilingual 
Wikipedia literature that seeks to surface cross-language 
similarities and differences. Systems associated with this line 
of work – e.g. Omnipedia [5] and Manypedia [36] – 
generally leverage visualization strategies to allow users to 
simultaneously view information about a concept of interest 
from multiple language editions. However, if a user is 

interested in a concept associated with sub-articles (e.g. 
World War II or Portland), these systems can only show 
content from the parent articles because they are unaware of 
the sub-articles. As a result, these systems will give 
inaccurate results when comparing a concept’s content 
across language editions, which partially undermines a key 
goal of these systems. Additionally, these systems also often 
omit large amounts of information from language editions 
that have sub-articles about the concept of interest, as the 
length of sub-articles in aggregate often dwarves that of the 
parent article. Finally, exacerbating the situation, these 
systems are user-driven, so many of the queries are to 
popular concepts, which tend to have more sub-articles. 

An unpublished release of the Omnipedia system recognized 
this problem and allowed users to manually specify sub-
articles [20]. Our goal with this paper is to make this process 
automatic as well as generalizable to any Wikipedia-based 
system or study, not just Omnipedia. Indeed, by leveraging 
the WikiBrain package we developed in this project, 
Omnipedia and any similar system could immediately 
become sub-article-aware in an automated fashion. 

Knowledge Graph-like Repositories 
The article-as-concept assumption is also problematic for 
recent high-profile efforts to integrate Wikipedia into 
“Knowledge Graph”-like structures [49] (e.g. [24,48]), most 
notably those associated with the Wikimedia Foundation’s 
newest project, Wikidata [55]. Broadly speaking, Wikidata 
consists of items that correspond to Wikipedia articles 
connected via semantically-labeled properties. Wikidata has 
become a critical resource for many intelligent technologies 
(e.g. [14,40,62]), which potentially makes the article-as-
concept assumption more problematic.  

Wikidata’s reliance on the article-as-concept assumption 
dates back to its launch in 2012, when it used Wikipedia 
articles to seed its corpus of concepts. As a result of this 
approach, sub-articles are considered to be separate concepts 
relative to their parent articles. In other words, in Wikidata, 
“History of Portland” (English) and “Portland” (English) are 
treated as describing entirely different concepts, as is the case 
for hundreds of thousands of other parent article/sub-article 
relationships. 

The problems associated with the article-as-concept 
assumption in Wikidata are quite apparent in the first large 
technology to use Wikidata information: Wikipedia itself. 
For instance, Wikidata is now the backend for the “Other 
languages” links in the Wikipedia sidebar. These links refer 
readers to other articles about the same concept in different 
languages. Because of the article-as-concept assumption in 
Wikidata, a reader of the “History of Portland, Oregon” 
(English) article (or a study using the Wikidata’s connections 
between language editions) will not be exposed to the large 
“History” section in the German article on “Portland 
(Oregon)” that happens to not be split into a separate article. 
The same problems are occurring with other Wikidata 
integrations in Wikipedia. For instance, the Wikipedia 



templates that now draw information from Wikidata will 
struggle to look up information about a single concept that is 
split across multiple Wikidata items. 

This situation could potentially be addressed with the “facet 
of” Wikidata property that was introduced in late 2014. 
However, owing to the large amount of crowdsourced labor 
necessary to propagate this property to all appropriate 
concept pairs, this property is largely unused outside of a 
series of automatically-added temporal “facet of” 
relationships (e.g. connecting “2003 in film” to “film”). 
Indeed, none of the sub-articles for “Portland, Oregon” – e.g. 
“History of Portland, Oregon”, “Tourism in Portland, 
Oregon”, “List of Notable People from Portland, Oregon” – 
are connected to the Portland, Oregon Wikidata item by the 
“facet of” property.  

One potential application of our work is leveraging the open-
source software package we have released to power a 
Wikidata editing bot to help propagate “facet of” properties 
to more Wikidata items. In addition, our software package 
can also be used to help Wikidata-based applications 
dynamically integrate information from parent articles and 
sub-articles. 

Wikipedia-based Intelligent Technologies 
A large number of Wikipedia-based intelligent technologies 
adopt the article-as-concept assumption, usually doing so 
implicitly by integrating the assumption into core data 
structures and techniques. While the manner in which this is 
done varies from technology to technology, a useful case 
study comes from the Milne-Witten semantic relatedness 
algorithm [37], an influential Wikipedia-based contribution 
to natural language processing. This algorithm assesses the 
relatedness between two concepts by mapping them to 
Wikipedia articles and comparing the sets of articles that link 
to each of these articles (i.e. evaluating inlink overlap). 
However, since the algorithm treats “History of Portland, 
Oregon” (English) and “Portland, Oregon” (English) as 
describing entirely different concepts – as it does for all 
parent/sub-article pairs – Milne-Witten misses potentially 
valuable relatedness signals when comparing sets of in-
linking articles (e.g. it would not consider inlinks to “History 
of Portland, Oregon” when assessing relatedness to the 
concept of Portland). Similar situations occur with Explicit 
Semantic Analysis [16] and other prominent semantic 
relatedness measures. Moreover, as is the case with 
Wikipedia-based studies, it is likely that multi-lingual 
Wikipedia-based technologies (e.g. [34,46]) will be more 
affected than single-language technologies due to the 
diversity of sub-article relationships across language 
editions. 

It should be relatively straightforward to address these issues 
by integrating our sub-article matching problem model into 
approaches like Milne-Witten, ESA, and others. For 
instance, in the Milne-Witten case, preprocessing to 
effectively append all sub-articles to their parent articles 
would solve the problem. 

DATASET DEVELOPMENT 

Wikipedia Corpus 
We downloaded XML Wikipedia data dumps in January 
2015 and processed these dumps using WikiBrain [47], 
which is a Java software framework that provides access to 
a range of Wikipedia datasets and Wikipedia-based 
algorithms (including the semantic relatedness algorithms 
we use below). We focused on three language editions: 
Chinese, English and Spanish. These were selected because 
they (1) are widely spoken and (2) span the East/West 
spectrum, which has proven to be an important consideration 
across a large body of HCI literature (e.g. [5,22,25,35]). We 
additionally processed 22 other language editions as we 
required additional language editions to operationalize 
language-neutral features (see below). Overall, our 
Wikipedia datasets contains the 25 language editions with 
the most articles (as of January, 2015), excluding largely bot-
generated editions like Cebuano and Waray-Waray. It is 
important to note that, in addition to utilizing WikiBrain, we 
also contributed back to WikiBrain by developing a sub-
article matching problem extension.  

Sub-article Candidates 
An essential dataset in our study is our large sub-article 
candidate dataset. In this sub-section, we first define sub-
article candidates and then describe how we mine them from 
the Wikipedia corpora described above. 

Defining Sub-article Candidates 
Without additional information, any Wikipedia article could 
be a sub-article of any other Wikipedia article in the same 
language edition. As such, a potentially intractable 
computational problem emerges. For instance, with its over 
5,210,165 articles, the English Wikipedia alone would 
require examining more than 25 trillion potential sub-article 
relationships (5210165 * 5210165 - 5210165).  

Fortunately, Wikipedia editors use a number of indicators 
that allow us to prune away a huge portion of these potential 
sub-article relationships a priori, resulting in a much smaller 
(but still large) group of sub-article candidates. Editors 
employ these indicators – which vary from language edition 
to language edition – to highlight for readers when content 
from a parent article has been split off into a sub-article.  

To identify indicators for sub-article candidates, a single 
investigator fluent in English and Spanish accessed 
thousands of pages in all 25 language editions in our corpus, 
focusing on concepts that typically had sub-articles in many 
language editions (e.g. countries, major historical events, 
large cities). Although context is usually sufficient to 
identify a sub-article relationship, the investigator used 
Google Translate as an aid when necessary. Whenever the 
investigator encountered a potential sub-article relationship, 
he recorded the parent article (e.g. “Portland, Oregon”), the 
potential sub-article (e.g. “History of Portland, Oregon”), 
and, most importantly, the Wiki markup that was used to 
encode the relationship (Wiki markup is the markup 
language used by Wikipedia editors to write articles). The 



final dataset consists of 3,083 such records, and is included 
in the release of our ground truth dataset.  

Using the above process, we identified two general types of 
sub-article indicators. The first type is the template-based 
indicator that resembles the appearance of Figure 1, although 
the specific markup and prompt varies within and across 
languages (e.g. the “{{main article}}” template in Spanish is 
“{{AP}}” for artículo principal, and similar English 
templates include {{see also}} and {{further}}). Templates 
in Wikipedia are a type of wiki markup that editors can use 
to generate complex HTML just by entering a few 
parameters, which is illustrated in Figure 1.  

The second type of indicator is significantly different. 
Potential sub-article relationships encoded through this type 
of indicator are listed at the bottom of articles under a header 
titled “See also” or its equivalent in other languages. 
Interestingly, using see also-based indicators for sub-articles 
is explicitly contrary to community guidelines in some 
language editions (e.g. the English Wikipedia’s Manual of 
Style, which state that “See also” sections should be reserved 
for links to peripherally-related content). However, our 
candidate dataset reveals that editors frequently violate these 
guidelines (e.g. Figure 2).  

More generally, while both template-based and see-also 
based indicators are often used to indicate sub-article 
relationships, they are also used for a variety of other 
purposes, causing large numbers of false positives to emerge. 
Figure 1 illustrates this phenomenon with an example 
highlighting one of the more common sub-article indicators 
in the English Wikipedia: the {{main article}} template-
based indicator. The top of Figure 1 shows a situation in 
which this indicator is used to demarcate a true sub-article 
relationship (“Portland, Oregon” and “Sports in Portland, 
Oregon”), but the bottom shows a situation in which this is 
clearly not the case (“Caffeine” and History of chocolate”, 

“History of coffee”, “History of tea”, and “History of yerba 
mate”).  

To summarize, although sub-article indicators like “{{main 
article}}” are ambiguous, mining them from the article text 
of each language edition is an essential pre-processing step. 
This is because (1) they can be considered to be a broad 
superset of all sub-article relationships and (2) they prevent 
us from having to compare all articles in every language 
edition in a pairwise fashion (a potentially intractable brute 
force approach). Below, we describe the procedures we use 
to execute this multi-faceted mining process. 

Mining Sub-article Candidates 
After developing our dataset of sub-article indicators, we 
used these indicators to write a script that parsed out all sub-
article candidates across all 25 languages. In most cases, this 
script utilizes straightforward regular expressions, although 
other cases were more complicated. Our script is included in 
our open-source WikiBrain sub-article software library. 

A quick examination of this dataset was our first indication 
that separating the signal (true sub-articles) from the noise 
(false sub-articles) will be difficult, even among the much 
narrower class of sub-article candidates. We originally 
expected that many sub-articles would follow the pattern 
“{something} of {parent article}” such as “Geography of the 
United States” (sub-article of “United States”), and the 
equivalent in each of the 25 languages we considered (e.g. 
“Geografía de Estados Unidos” in Spanish). However, it 
became clear in this preliminary dataset that a significant 
portion of sub-articles violate this pattern. For instance, this 
preliminary dataset contains potential sub-article 
relationships between parent articles p and candidate sub-
articles pcs such as p = “List of Chinese Inventions” and pcs 
= “Four Great Inventions”, p = “United States” and pcs = 
“American Literature” and p = “The Silmarillion” and pcs = 
“Valaquenta” (all from the English Wikipedia.) 

Overall, we found sub-article candidates for a substantial 
proportion of Wikipedia articles. For instance, over a quarter 
of articles in English and Spanish Wikipedia contained sub-
article candidates. More details about these percentages, 
including the share of template-based and see also-based 
indicators, is available in Table 1. 

 
Figure 2. The “See also” section of the English article about the 
Canadian territory of Nunavut. Some links here are clearly sub-
articles, while others are more distantly related to the concept of 
Nunavut (e.g. “Arctic policy of Canada”). 

 

 
Figure 1. An example of the ambiguity inherent in sub-article 
indicators, in this case the “{{main article}}” template in the English 
Wikipedia. Links in red indicate potential sub-article relationships. 



Ground Truth Datasets 
As is typical in many types of machine learning, our sub-
article models require extensive ground truth data for both 
training and testing. Because no prior work has defined, let 
alone attempted to solve, the sub-article matching problem, 
it was necessary to both generate our own ground truth 
datasets as well as to define their character and structure. By 
developing these datasets and making them publicly 
available, we also hope to make it easier for other researchers 
to build on our results.  

In this sub-section, we first define the high-level structure of 
our ground truth datasets, focusing on how they were 
sampled from the larger set of overall sub-article candidates. 
We then describe how we labeled each potential sub-article 
relationship in these datasets. This is an important process 
that, as is often the case when developing the first ground 
truth dataset for a new problem, led to a formalization of the 
definition of sub-articles. 

Sampling and Structure: Selecting Sub-article Candidates 
We generated three ground truth datasets, each using a 
different strategy to sample from the sub-article candidate 
population. All three datasets consist of a series of <p, pcs > 
pairs (i.e. <parent article, potential sub-article> pairs). For 
each dataset, we randomly selected 200 pairs from English, 
and 100 each from Spanish and Chinese. Each of the three 
sampling strategies was designed to maximize ecological 
validity for a different class of sub-article matching use 
cases. These strategies are described in more detail below:  

High-Interest: This dataset consists of < p, pcs > pairs 
whose parent articles are sampled from the 1,000 most-
viewed articles for a given language edition. We gathered 
page view data from the Wikimedia’s Page View API2 and 
aggregated it from August 2015 to February 2016. This is a 
user-centered dataset that is driven by the actual demand for 
Wikipedia content. Performance on this dataset will be a 
good proxy for the model’s performance on most real-life 
systems, especially those that are directly user-facing (e.g. 
Omnipedia [5], Manypedia [36], etc.). This means that 
High-Interest is likely the most important of the three 
datasets. 

                                                             
2 https://wikimedia.org/api/rest_v1/ 

Random: The parent articles in this dataset were sampled 
randomly from all articles in each language edition. 
Corresponding sub-article candidates were then randomly 
selected from the set of candidates available for each parent 
article (potential parent articles without sub-articles were 
ignored). Given the long-tail quality distribution of 
Wikipedia articles [58], this dataset includes large numbers 
of short, low-quality articles. It also contains many articles 
that are of very limited reader interest (relatively speaking). 
This dataset will give a lower-level understanding of 
performance across entire language editions. 

Ad-Hoc: This dataset was generated by sampling from the 
3,083 <p, pcs > pairs generated during the indicator 
identification process, focusing only on candidates from 
English, Spanish, and Chinese. This was the first dataset we 
generated, and it served as a successful feasibility test. It also 
provides a useful triangulation of our models’ performance 
relative to the other two ground truth datasets.  

Labeling: Evaluating Sub-article Candidates 
The Wikipedia community has no precise formal definition 
for what separates a “true” sub-article from a “false” one. 
This is because the sub-article construct was invented for 
human readers, and human readers do not need such binary 
distinctions: if a human is interested in a link, s/he clicks on 
it, regardless of whether the link is a sub-article or not. (We 
return to this issue when covering audience-author mismatch 
in the Discussion section.) 

Wikipedia-based studies and systems, on the other hand, 
must make this binary distinction, and must do so frequently 
and explicitly. As such, a major challenge becomes finding a 
way to codify the definition of a sub-article relationship in 
our ground truth datasets in a fashion that Wikipedia-based 
systems and studies can understand, while at the same time 
respecting the variability of sub-article relationships encoded 
by human Wikipedia editors.  

To address this challenge, we adopted the approach of past 
Wikipedia research that has also sought to codify fluid 
Wikipedia constructs (e.g. [6]). Specifically, we utilized a 
two-part method that allows the researcher or system 
designer to decide how broadly or narrowly they want to 
define the sub-article construct, according to the needs of 
their application or study. The first step in this process 
involved coding potential sub-article relationships on an 
ordinal spectrum in recognition of the non-binary nature of 
the sub-article relationships. We then proposed several 
reasonable thresholds and examined our results using each of 
these thresholds. This multi-faceted approach allows us to 
understand the performance of our models at each breadth 
level and allows the users of our system to flexibly choose 
from broader and stricter definitions of sub-articles. 

With regard to the ordinal coding stage, for each language of 
each dataset (English, Spanish, Chinese), we recruited two 

 English Chinese Spanish 
% of articles 

(with templates + 
see also section) 

20.5% 11.6% 25.2% 

% of articles 
(with templates) 

4.9% 2.3% 7.7% 

% of pageviews 
(with template) 

24.7% 11.9% 25.6% 

Table 1. The percent of articles and page views 
associated with potential sub-articles.  

 



coders who were fluent in the corresponding language. 
Coders were asked to assign each <p, pcs> a code along an 
ordinal scale from 0 (definitely not a sub-article) to 3 
(definitely a sub-article), with each code being defined as 
follows3: 

• 3: The only reason the sub-article candidate exists is to 
split the corresponding parent article into more 
manageable subtopics. The potential sub-article really 
does not deserve its own page, and the corresponding 
parent article is the best place to put the sub-article’s 
content. 

• 2: Same as above, but the topic of the sub-article 
candidate is significant enough to warrant its own page. 

• 1: The sub-article candidate contains information that 
would be useful to have in the parent article, but also 
contains its own, unrelated (non-overlapping) content. 

• 0: The sub-article candidate is about a topic that is 
trivially related to the parent article or has a large 
amount of non-overlapping content. 

The inter-rater reliability on our datasets as computed by 
Weighted Cohen’s Kappa [12] ranged from 0.56 to 0.78, 
which is considered a “moderate” to “substantial” agreement 
[32]. We used Weighted Cohen’s Kappa since it is the most 
appropriate for our ordinal codes [3].  

After examining our ground truth ratings data, we 
determined three reasonable thresholds that researchers and 
practitioners may want to use to separate sub-articles from 
non-sub-articles. The strictest definition requires an average 
score of 3.0 from two coders, meaning that both gave the 
relationship a ‘3’. Next, we considered a threshold at an 
average rating of 2.5, which is more flexible but still required 
one coder to give a candidate relationship a ‘3’ and the other 
to give it a ‘2’. Finally, we also considered an average score 
of 2.0 as a threshold, which is the broadest definition and can 
come from various rating configurations. 

MODELING 

Overview  
The goal of our modeling exercise was to accurately address 
the sub-article matching problem using machine learning 
techniques. In other words, our aim was to build 
classification models that can accurately predict whether a 
parent article/sub-article candidate pair <p, pcs> represents a 
true sub-article relationship (i.e. a <p, ps>). As we discussed 
above, we defined this classification problem along three 
dimensions: (1) dataset {high-interest, random, ad-
hoc}, (2) sub-article definition/threshold {average rating = 
2.0, 2.5, 3.0} and (3) language {English, Spanish, Chinese}. 
Our machine learning experiments, described below, allow 
us to assess our models’ performance along each dimension. 

                                                             
3 Our full coding instructions and codebook are included in the code 
repository, linked above.  

We experimented with a variety of well-known machine 
learning algorithms including SVM, Random Forest, 
Decision Tree, Naïve Bayes, Logistic Regression, and 
Adaboost. In the body of this section, we report results from 
the algorithm with the best performance. Our emphasis here 
is to demonstrate that one can successfully address the sub-
article matching problem using popular machine learning 
algorithms instead of providing a detailed performance 
analysis of each specific algorithm. However, we 
supplement this discussion with detailed classification 
accuracies for each machine learning algorithm and dataset 
configuration in Appendix A. Interestingly, in most 
situations, the choice of the best machine learning algorithm 
is consistent across languages and definitions of sub-articles 
within a given dataset type (i.e. high-interest, random 
or ad-hoc).  

For evaluation, we followed standard practice [7] and 
conducted 10-fold cross validation, reporting the average 
accuracy across all folds. Because this paper is the first to 
define and attempt to solve the sub-article matching problem, 
we cannot compare our models’ accuracies with any prior 
work. This is a relatively common situation when applying 
machine learning in HCI research [23,43]. When it occurs, 
the best practice is to one compares one’s results to 
straightforward baseline approaches (e.g. [19,44,61]). In this 
paper, we utilized the baseline approach that we found to be 
most powerful: always predicting the most frequent label in 
the training set.  

Because our models are only as powerful as the features they 
leverage, before describing our results, we first describe each 
feature in detail. The features we use are diverse, drawing 
from techniques ranging from simple syntax comparisons, to 
network metrics, to advanced natural language processing 
algorithms. However, nearly all of our features have one key 
property in common: language neutrality. This means that 
they can be utilized to help predict whether a sub-article 
candidate is really a sub-article of a given parent article, 
regardless of the language edition of the parent and 
candidate.  

A frequent technique we use to make a feature that would be 
otherwise language-specific into one that is language neutral 
is immediately converting language-specific <p, pcs> pairs to 
language-neutral concepts using Wikidata cross-language 
mappings. For instance, comparing the number of characters 
or tokens shared by the parent and sub-article candidate 
article titles is a feature whose output and effectiveness 
varies extensively across language editions (i.e. it is more 
useful in Western languages than Eastern languages). 
However, by using cross-language mappings, when 
considering articles from Eastern language editions, our 
models can take advantage of the power of this approach in 
Western languages by examining the titles of the equivalent 



concepts in English, Spanish, and so on. Our typical 
approach to implementing this at scale is to calculate the 
value of each feature in a language-specific fashion for all 
articles about the same concepts as the input <p, pcs> pair. 
We then aggregate the output of these values, e.g. using 
maximums, averages, ratios, or summaries.  

Features 

PotSubLangsRatio 
Since assigning sub-article indicators is a manual process, 
we expect that if an article is a sub-article candidate for a 
given parent article in many different language editions, this 
will increase the likelihood that the candidate is a true sub-
article. For instance, “History of the United States” (English) 
is a sub-article candidate (as indicated by the “{{main 
article}}” template) of “United States” (English), and the 
same relation is true for their corresponding articles in 
Spanish Wikipedia (with the {{AP}} template). We 
operationalize this feature by calculating the ratio between 
the number of languages in which there is a potential sub-
article relationship and the number of languages in which the 
parent articles and sub-article candidate both have 
corresponding articles.  

MaxTokenOverlap 
This feature focuses on article titles only and considers the 
percentage of tokens in the parent article’s title contained 
within the sub-article candidate’s title. It takes the maximum 
token overlap of the equivalent articles in all languages. A 
high value signifies that the parent article and sub-article 
candidate share a large portion of words in their titles (in at 
least one language) and we hypothesized that this would 
represent a higher-likelihood sub-article relationship. When 
computing this feature, we tokenized Eastern languages that 
are written in a scriptio continua pattern (no spacing or other 
dividers) and to match characters between Traditional 
Chinese and Simplified Chinese.  

NumLangsRatio 
This feature measures the relative “globalness” of the parent 
article and the sub-article candidate across all 25 languages. 
It is computed as the number of language editions in which 
the parent article has foreign language equivalents, divided 
by the same number for the sub-article. For instance, for the 
<“Portland, Oregon”, “Sports in Portland, Oregon”> pair in 
English Wikipedia, “Portland, Oregon” has corresponding 
articles in all 25 languages while “Sports in Portland. 
Oregon” only has an article in the English Wikipedia. We 
hypothesized that a higher value would indicate a higher 
likelihood of a parent/sub-article relationship because other 
languages might not yet have split the relevant content into 
two articles.  

MainTemplatePct 
This feature leverages one of the most prominent sub-article 
indicators: the main template. Main templates can be seen in 
Figure 1, and all 25 language editions have a version of this 
template. Although ambiguously used in many cases, we 

hypothesized that main templates had the highest precision 
of all the indicators. Moreover, in many languages, the usage 
guide for this template corresponds well with the notion of 
sub-articles (e.g. [59]). We calculated this feature as follows: 
the number of language editions in which the sub-article 
candidate appears in parent article’s main template divided 
by the number of language editions in which there is any sub-
article indicator between the two articles. In other words, the 
feature is the share of the potential sub-article relationships 
between two concepts defined using a main template. 

MaxSectionTokenOverlap 
This feature specifically considers the template-based sub-
article indicators. Note that in Figure 1, these indicators 
almost always appear below a section sub-head. This feature 
is the direct analogue to MaxTokenOverlap, but uses the title 
of the preceding section sub-head rather than the titles of the 
articles. 

MaxMainTFInSub 
In all language editions, most Wikipedia articles begin with 
a summary of the content of the article. This feature 
calculates the term frequency of the parent article’s title in 
the summary paragraph of the sub-article candidate and takes 
the maximum across all languages. We hypothesized that as 
part of the natural editing process, when editors spin off a 
sub-article, they refer back to the parent article in the 
introduction. As such, we expected a higher value would lead 
to a higher likelihood of a sub-article relationship. 

IndegreeRatio 
This feature describes the relative centrality of the parent 
article and sub-article candidate in the article graph of a 
given language edition. We hypothesized that true sub-article 
relationships would more often involve a central/important 
parent and a less central/important sub-article than vice 
versa. This feature is calculated by taking the ratio of the 
indegree of the parent article (i.e. the number of Wikipedia 
articles that contain a hyperlink to this article) and the 
indegree of the sub-article, each of which is summed across 
all languages. Indegree is commonly used as a 
straightforward metric of network centrality/importance in 
large graphs like the Wikipedia article graph [27]. 

MilneWitten 
This feature is the MilneWitten semantic relatedness (SR) 
measurement [37,38] between the parent article and sub-
article candidate. We hypothesized that a higher SR between 
the two articles would mean that these two articles are more 
likely to be in true sub-article relationship. For example, in 
the English Wikipedia, “History of chocolate” and 
“Caffeine” are less related than “Sports in Portland, Oregon” 
and “Portland, Oregon”.  

Other Features 
Besides the features described above, we also tested features 
that consider the structural complexity of p and pcs. For 
example, the ratio between the number of templates in a 



parent article and candidate sub-article and the ratio between 
the number of references in a parent article and a candidate 
sub-article. These features provided only a marginal 
improvement to the classification accuracy. With parsimony 
in mind, we did not include them in the final model 
construction.  

Results 

High-Interest Dataset 
Figure 3.1 shows the ability of our model to correctly 
distinguish true sub-article relationships from false ones in 
the High-Interest ground truth dataset according to all 
three definitions of sub-articles (2.0, 2.5, 3.0). Recall that the 
High-Interest dataset focuses on high-demand concepts 
that are frequently accessed by Wikipedia readers, making 
our model’s results on this dataset particularly important. For 
simplicity, although we tried the multiple machine learning 
algorithms described above, we only report the one with the 
highest accuracy in the figure (more results are available in 
Appendix A). For High-Interest, Linear SVM and 
Random Forest alternated as the best techniques.  

As can be seen in Figure 3.1, in all cases, our models 
outperformed the baseline method by a substantial margin. 
On average, our model exceeded baseline performance by a 
factor of 1.45, and this number went up to around 1.8 in 
specific cases. The highest absolute accuracy was 90% 
(English, 2.5-average) and the lowest absolute accuracy was 
70% (Spanish, 2.0-average). Overall, Figure 3 shows that for 
concepts that are in high demand, the features we have 
defined make it a relative straightforward task for a learned 
classification model to determine whether a sub-article 
candidate is a “true” sub-article.  

Random Dataset 
Figure 3.2 shows the classification results on the Random 
dataset. Immediately visible in the figure is that the baseline 
accuracies for this dataset are much higher than those for the 
other datasets. In the most extreme case – the 3.0-threshold 
Spanish dataset – the baseline accuracy reaches 100%, which 
makes the classification results meaningless in the context of 
this study. These higher baselines occur because in this 
dataset, the vast majority of sub-article candidates are 
negative examples. The necessary result of this situation is 
that a baseline approach that always guesses ‘no’ will be 

 

Figure 3.1 Figure 3.2 

  

Figure 3.3 Figure 3.4 

Figure 3.1 – 3.4. Classification accuracies across datasets, language editions and different thresholds of sub-article ratings. Each 
colored vertical bar shows the best accuracies among the machine learning algorithms considered, and the black line indicates 
baseline performance. 

 



accurate most of the time, and this is a tough baseline for any 
algorithm to beat.  

Indeed, while their absolute accuracies are quite high, our 
models in general only marginally improve upon the 
baselines with respect to this dataset. The highest 
classification accuracy relative to the baseline is on Chinese 
sub-article candidates with the 2.0-average threshold. 
English with a 3.0-average threshold was the only 
configuration in which the classifier failed to improve upon 
the baseline at all. 

Ad-hoc Dataset 
Figure 3.3 shows the classification accuracies on the Ad-Hoc 
dataset. Among the machine learning algorithms, Linear 
SVM and Random Forest alternate as the best algorithm 
across different languages and definitions of sub-articles. 
While absolute accuracy levels on this dataset are 
comparable with those for High-Interest, the baseline 
accuracies are generally higher. This means that a smaller 
improvement was made by our models on this dataset 
relative to the baseline. 

Summary of Results 
Figure 3.4 compares the average classification performance 
for each dataset across all sub-article thresholds and 
languages. This figure further reinforces several high-level 
trends mentioned above:   

• On the High-Interest dataset that contains articles in 
high-demand by readers and the Ad-Hoc dataset that is 
sampled from more meaningful concepts, our 
classification results outperform the baseline 
consistently and substantially across all three languages 
(See Figure 3.1, 3.3 and 3.4). 

• On the Random dataset that contains articles typically of 
lower interest, shorter length, and lower quality, our 
models generally do not make a substantial 
improvement compared to the baseline method (See 
Figure 3.2 and 3.4). 

Feature Analysis  
In order to understand which features were the most 
important to the success of our models, we examined the 
Random Forest versions of our models. These models have 
the advantage of (1) being the top or close to the top 
performing models in most configurations of our 
experiments (see Appendix A) and (2) they afford 
straightforward analysis of feature importance. Specifically, 
in Random Forest models, feature importance can be 
evaluated by adding up the weighted impurity decrease for 
all trees in the forest using an impurity function such as the 
Gini index or Shannon entropy [8,9]. This approach has been 
used for feature selection in various domains including but 
not limited to bioinformatics [50,51], image classification 
[17], and ecology [13].  

Table 2 presents the importance rank for each feature on the 
High-Interest dataset (averaged across language and 
sub-article definition). Note that MainTemplatePct is the 
least important feature. Recall that this feature is motivated 
by the fact that it reflects community-defined rules for 
linking parent articles and sub-articles. As such, we 
originally expected MainTemplatePct to be a strong 
predictor of true sub-article relationships. However, even 
though we account for human error to some extent (by 
aggregating across all languages), MainTemplatePct remains 
relatively non-predictive. Closer examination of the data 
reveals that although these guidelines are properly 
documented, human editors failed to consistently follow the 
guidelines. For example, in the “Donald Trump” (English) 
article, which is one of the top ten most-viewed English 
articles in our page view data, Wikipedia editors correctly 
tagged the true sub-article “Donald Trump presidential 
campaign, 2016” with the template {{main article}} while 
they incorrectly tagged the true sub-article “Donald Trump 
presidential campaign, 2000” with the template {{see also}}.  

Table 2 also shows that MaxSectionTokenOverlap, 
MaxTokenOverlap, and MaxMainTFInSub are relatively 
important features. Unlike MainTemplatePct, which relies 
on editors explicitly indicating sub-article relationships as 
defined by community guidelines, these natural language 
features are implicit: they capture the lexical, linguistic and 
semantic relationships between parent articles and sub-
articles that emerge through the natural editing process. For 
instance, when Wikipedia editors move content to a new sub-
article, it is natural for them to add a lead sentence that points 
back to the parent article [60]. This natural editing process is 
captured by MaxMainTFInSub. We believe that the variation 
in effectiveness between the explicit standard-based features 
and the implicit features may point to author-audience 
mismatch issues, which will be detailed in the Discussion 
section.  

The Impact of the Article-as-Concept Assumption 
Our trained models allow us to quantify the impact of the 
article-as-concept assumption. Specifically, the models 

Feature Average Importance 
Rank 

MaxMainTFInSub 2.7 
MaxTokenOverlap 2.8 

MaxSectionTokenOverlap 3.7 
NumLangsRatio 3.8 

PotSubLangsRatio 4.5 

MilneWitten 5.4 
IndegreeRatio 5.6 

MainTemplatePct 7.3 

Table 2. Feature importance averaged across all languages 
and all definitions of sub-articles on the High-Interest 
dataset. Feature importance is computed using a Random 
Forest model. 

 



allow us to ask: for how many articles and page views is the 
article-as-concept assumption invalid due to sub-articles?  

To address this question, we deployed our High-
Interest, 2.5-average threshold model on the 1,000 most-
viewed articles in English Wikipedia. Table 3, which 
contains the results of this analysis, shows that sub-articles 
cause violations of the article-as-concept assumption in a 
large percentage of cases. For instance, over 70% page views 
to this set of critical articles go to articles that contain at least 
one sub-article. Table 3 also reveals that on average, each of 
the top 1000 English Wikipedia articles has 7.5 sub-articles. 

This result has important implications for user-centric 
Wikipedia-based technologies such as Omnipedia, 
Manypedia, and others.  Based on the findings in Table 3, 
designers of these technologies should assume that users will 
frequently engage with articles that have sub-articles. 
Indeed, it appears that at least for the most popular articles, 
sub-articles are not the exception, they are the rule. 

DISCUSSION 

Audience-Author Mismatch 
Immediately above, we showed that the article-as-concept 
assumption, which is central to many Wikipedia-based 
studies and systems, fundamentally breaks down for a 
substantial proportion of high-value Wikipedia articles. In 
this section, we describe how this issue may be just one in a 
growing series of problems for Wikipedia-based studies and 
systems associated with author-audience mismatch [26]. 

The author-audience mismatch framework was originally 
intended to explain problems associated with human authors 
failing to sufficiently customize their content for a given 
audience (e.g. in a cross-cultural context). However, this 
framework may also be helpful for understanding the root 
cause of the article-as-concept assumption and its resultant 
problems. Namely, Wikipedia editors write Wikipedia 
articles for the needs of human audiences, but increasingly, 
Wikipedia has two additional audiences as well: Wikipedia-
based studies and, in particular, Wikipedia-based systems. 
These audiences often have fundamentally different needs 
than human audiences. 

It is important for Wikipedia’s studies and systems audience 
that all content about a concept in a given language edition 
be contained in a single article. However, for Wikipedia 
editors’ intended audience – other humans – doing so would 
violate Wikipedia’s guidelines to break up long articles into 
parent and sub-articles. These guidelines emerge from clear 

human needs. For instance, lengthy articles take a long time 
to load with the slow Internet connections used by many 
Wikipedia readers [57]. Additionally, long-standing notions 
of web usability clearly establish that lengthy web pages 
result in poor user experiences [10,41,42].  

The tension between the needs of human audiences and those 
of Wikipedia studies and systems is exacerbated by a few 
additional findings in this paper. In our analysis of feature 
performance, we identified that while Wikipedia has 
developed a number of structured mechanisms to link sub-
articles to their corresponding parent articles (e.g. {{main 
article}} templates), they are misused so extensively that our 
models found them only minimally helpful when separating 
true sub-article relationships from false ones. We also 
observed the inverse. For instance, structured constructs like 
“See also” sections are not supposed to be used for strong 
relationships like those between parent articles and sub-
articles, but editors use them this way anyway. It is not hard 
to see why these problems have emerged:  human authors 
know that their human audience can click on a sub-article 
link if they are interested, regardless of whether it is properly 
encoded. 

Author-audience mismatch problems may create major 
challenges for machines and studies beyond the article-as-
concept assumption, and even in peer production datasets 
other than Wikipedia. For example, consider the tagging 
infrastructure in OpenStreetMap (OSM) – the “Wikipedia of 
Maps” [15]. OpenStreetMap has a robust and well-defined 
set of tagging practices, but recent evidence suggests that 
OSM editors do not follow standards when they are not 
perceived as necessary for their specific human audience 
[31]. For instance, if a human has to decide between tagging 
a restaurant that serves both coffee and donuts with either 
“coffee shop” or “donut shop”, it is unlikely they will spend 
time reading and strictly following the guidelines. Instead, 
the most likely thought process is “I’ll choose one and people 
know that they can probably get coffee and donuts at both 
types of places.” However, for an OSM-based location-based 
recommender system using this information as training data 
(e.g. [4]), this is a potentially serious source of noise if it 
generalizes across many tags. 

Returning to Wikipedia, another example comes from how 
different language editions treat synonyms. Recent research 
by Wulczyn  et al. [62] has found that different language 
editions opt to create articles for different synonyms of the 
same concept. For instance, the English Wikipedia decided 
to create article only for “Neoplasm” while German 
Wikipedia chose to create article only for “Tumor”. While 
this may suit the human audiences of each individual 
language edition, it requires additional intelligence for a 
machine to establish a linkage.  

Limitations and Future Work  
While we were able to address the sub-article matching 
problem with good accuracy for most datasets, our solution 
has a few important limitations that serve as starting points 

Impact Metric Statistics 
% of articles w/ sub-articles 70.8% 

% of page views to articles w/ sub-
articles 71.0% 

Avg # of sub-article per article 7.5 

Table 3. The impact of applying our model on the top 
1000 most-viewed articles in English Wikipedia. 

 



for future work. First, our models were trained only on 
potential sub-article relationships that are explicitly encoded 
by Wikipedia editors. We believe this approach is 
appropriate as it respects the decisions of editors and almost 
certainly captures the vast majority of sub-article candidates. 
That said, it would be interesting to try to discover implicit 
sub-articles in an automated fashion. A system that can 
execute implicit sub-article discovery successfully may be 
useful to Wikipedia editors [56] in addition to system-
builders and researchers who work with Wikipedia. 

Another limitation is that our models are trained on only a 
small set of data from just three language editions. There are 
possible nuances in sub-article usage that might be missed 
with this limited view. A third limitation is that although our 
models work well on the articles that attract the most reader 
interest, they fail to work equally well on the large number 
of articles that are of lower quality and shorter length. Future 
work should involve designing a model focused on these 
articles.  

Finally, since we made our features language-independent by 
aggregating over all language editions, we observed some 
scalability problems for structurally complex articles. For 
example, feature generation for the “United States” (English) 
page, which contains over 200 potential sub-articles, can take 
minutes. While this problem can be easily addressed by 
caching the classification results, future work may want to 
improve the scalability of our approach to reduce pre-
processing and updating time. 

CONCLUSION 
In this paper, we identified and problematized the article-as-
concept assumption that is widely adopted in Wikipedia-
based studies and systems. We showed that this issue will 
impact the performance and accuracy of these studies and 
systems for a large percentage of high-interest Wikipedia 
articles, and we formulated the sub-article matching problem 
as a way to mitigate this situation. By developing models that 
draw on a diverse feature set, we addressed the sub-article 
matching problem with relatively high accuracy, especially 
for the Wikipedia articles that attract the most attention. 
Finally, in order to help researchers immediately address the 
sub-article matching problem in their own systems and 
studies and push this line of research forward, we have made 
our model and our gold standard sub-article datasets freely 
available for download4. 
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APPENDIX A: DETAILED CLASSIFICATION ACCURACIES FOR FIGURE 3.1- 3.4 
 
Detailed classification results for the High-Interest Dataset (Figure 3.1) 

 zh en es 
 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 

Baseline 63.54% 59.37% 50% 56.03% 50.24% 58.93% 50.98% 70.58% 81.37% 
Linear SVM 85.44% 90.81% 84.66% 88.92% 91.38% 83.09% 64.81% 67.45% 81.18% 

Random Forests 85.33% 86.44% 86.77% 92.69% 90.80% 82.95% 70.00% 74.18% 81.18% 

Naïve Bayes 85.44% 87.66% 83.66% 89.35% 89.88% 82.57% 65.90% 73.36% 70.45% 
Logistic 85.33% 88.07% 83.44% 90.33% 89.90% 82.07% 67.72% 71.27% 78.27% 

KNN 72.88% 74.00% 71.88% 80.54% 77.21% 78.16% 69.54% 79.18% 83.18% 

Adaboost 83.33% 85.44% 82.66% 88.88% 90.83% 82.97% 59.18% 70.72% 75.18% 
Decision tree 79.00% 81.00% 75.88% 88.28% 86.42% 78.07% 67.72% 62.81% 72.27% 

 
Detailed classification results for the Random Dataset (Figure 3.2) 

 zh en es 
 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 

Baseline 69.60% 76.47% 85.29% 89.10% 91.58% 98.01% 63.00% 86.00% 100% 

Linear SVM 83.18% 82.27% 91.18% 91.52% 92.02% 98.02% 66.99% 85.00% N/A 
Random Forests 79.27% 86.18% 86.18% 91.04% 93.02% 97.52% 63.00% 90.00% N/A 

Naïve Bayes 73.45% 69.36% 85.18% 79.61% 75.26% 59.04% 67.99% 77.00% N/A 

Logistic 84.18% 83.27% 92.095 91.52% 92.02% 98.02% 66.99% 88.00% N/A 
KNN 81.45% 83.09% 86.09% 89.52% 92.02% 98.02% 52.00% 85.00% N/A 

Adaboost 81.18% 81.18% 90.09% 87.59% 90.02% 98.02% 62.99% 83.00% N/A 
Decision tree 82.27% 76.36% 92.18% 84.09% 87.57% 97.04% 64.99% 86.00% N/A 

 
Detailed classification results for the Ad-Hoc Dataset (Figure 3.3) 

 zh en es 
 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 

Baseline 67.96% 58.25% 55.33% 56.71% 55.72% 74.12% 51.15% 59.59% 75.75% 
Linear SVM 85.63% 83.63% 80.45% 73.66% 73.66% 77.09% 69.44% 80.55% 71.88% 

Random Forests 86.63% 82.54% 81.36% 70.57% 72.14% 80.61% 68.66% 73.66% 76.88% 
Naïve Bayes 79.72% 78.72% 81.36% 73.14% 69.69% 37.30% 67.44% 71.66% 67.77% 

Logistic 86.45% 85.54% 81.45% 71.19% 73.66% 77.57% 66.44% 73.55% 75.00% 

KNN 78.81% 82.63% 71.72% 71.28% 66.28% 69.61% 59.55% 66.55% 66.77% 
Adaboost 82.54% 73.90% 75.63% 70.07% 73.11% 78.11% 64.55% 70.44% 71.66% 

Decision tree 84.72% 81.36% 77.63% 64.66% 65.51% 71.09% 60.55% 67.55% 64.77% 

 
Detailed overall classification accuracies (Figure 3.4) 

 High-Interest Ad-Hoc Random 
 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 Rating:2 Rating:2.5 Rating:3 

Baseline 56.04% 52.83% 62.46% 58.31% 53.10% 69.72% 77.77% 86.38% 95.27% 

Linear SVM 86.09% 88.59% 81.44% 74.00% 77.70% 79.12% 81.10% 86.57% 94.78% 

Random Forests 83.86% 85.87% 78.73% 73.46% 74.70% 74.62% 78.16% 88.34% 94.28% 
Naïve Bayes 84.12% 85.62% 81.20% 73.50% 74.26% 74.21% 74.70% 80.18% 86.39% 

Logistic 84.87% 87.60% 80.70% 75.46% 76.45% 79.37% 81.10% 88.32% 94.28% 
KNN 77.47% 77.75% 74.82% 72.03% 72.28% 72.92% 80.60% 87.83% 94.52% 

Adaboost 84.17% 84.66% 80.96% 74.99% 73.74% 75.63% 80.39% 86.59% 94.40% 

Decision tree 85.13% 80.17% 74.57% 67.03% 67.01% 72.42% 74.45% 79.90% 92.34% 

 


