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1. INTRODUCTION 

Collective intelligence paradigms were initially developed to address problems that do not have an 
explicit geographic footprint (e.g. image labeling [von Ahn and Dabbish 2004]). However, in recent 
years, researchers and practitioners have used collective intelligence approaches to tackle geographic 
challenges. This is manifest in particular in physical crowdsourcing systems (e.g. TaskRabbit and 
related sharing economy platforms like UberX), peer production communities dedicated to describing 
geographic phenomena (e.g. “geowikis” [Priedhorsky and Terveen 2008] such as OpenStreetMap), and 
the consideration of geotagged social media (e.g. geotagged tweets and photos, check-ins). 
 
Geographers and those in the spatial computing and geographic information science (GIScience) 
communities have long known that “spatial is special” (e.g. [Longley et al. 2010; Goodchild 2001]), or 
that geographic processes have unique properties that are important to consider in both research and 
practice. In this abstract, we discuss our recent work that shows that collective intelligence is no 
exception to the “spatial is special” rule. That is, for a given collective intelligence system, the geography 
of the application area can have a dramatic effect on the operation and ultimate effectiveness of the 
system, i.e. same system + different geographic context = different result.  
 
We focus below on a set of spatial principles that emerge from the sub-field of geography known as 
human geography and these principles’ role in geographic collective intelligence systems. Human 
geography, broadly speaking, seeks to gain an understanding of how human processes shape and are 
shaped by the Earth’s surface (e.g. [Fellmann et al. 2007]). We discuss three human geographic 
principles that our work has found can play an important role in collective intelligence: (1) spatial 
homophily (i.e. “the Big Sort”), (2) distance decay, and (3) structured variation in population density. 

2. HUMAN GEOGRAPHY PRINCIPLES 
2.1 Spatial Homophily (i.e. “The Big Sort”) 
A large percentage of human geography research relates in some way to spatial homophily, or the notion 
that people of specific demographic characteristics – e.g. race, ethnicity, income, religion – tend to live 
close to one another. As has been highlighted in the popular science book “The Big Sort” [Bishop 2008], 
this principle has had a large effect on the quality of public schools, the outcomes of elections, income 
inequality, and any number of other major societal issues. 
 
In our work looking at physical crowdsourcing markets, we have seen evidence that spatial homophily 
can have a similarly substantial effect in the domain of collective intelligence. For example, in Thebault-
Spieker et al. [2017; 2015], we observed that spatial homophily is a major conduit by which demographic 
biases in TaskRabbit worker recruitment result in analogous demographic biases in service quality for 
customers. Specifically, we saw that there were substantially fewer ‘taskers’ (i.e., workers) in 
neighborhoods with certain demographic characteristics (e.g. low-socioeconomic status, large racial and 
ethnic minority populations), likely due in part to sign-up requirements (e.g. background checks, the 
need for a bank account). Coupled with distance decay (see below), this has resulted in TaskRabbit 
providing substantially worse and more expensive service in these neighborhoods. In other words, in 
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physical crowdsourcing systems like TaskRabbit, spatial homophily means that worker recruitment 
practices that are more successful with one demographic are likely to lead to more effective service 
where that demographic tends to live (and in nearby areas). We also observed a related trend in the 
ride-hailing platform UberX [Thebault-Spieker et al. 2017].  

2.2 Distance Decay 
Distance decay is a human geographic principle related to spatial homophily (and one that often acts in 
concert with it) that describes the phenomenon in which, all things being equal, spatial interaction tends 
to decrease as distance increases. This principle is often considered through the use of spatial interaction 
models, specifically gravity models (e.g. [Stewart 1948; Anderson 2010]). However, this principle need 
not be modeled to be understood: it explains why, holding all else constant, trade decreases as the 
distance between two countries increases (e.g. [Koo and Karemera 1991]), why you are more likely to 
visit a coffee shop closer to your residence than further away (e.g. [Erlander and Stewart 1990; Rodrigue 
et al. 2017]), and a large variety of other similar phenomena. 
 
In the geographic collective intelligence domain, we have observed that distance decay is a critical 
principle to consider for both researchers and practitioners.  In the physical crowdsourcing context, we 
and others have seen that distance plays a key role in worker decision-making processes like willingness 
to complete a task and the price a worker charges for a task (e.g. [Alt et al. 2010; Musthag and Ganesan 
2013; Thebault-Spieker et al. 2015]). The spatial interaction patterns seen in physical crowdsourcing 
are, however, simply a manifestation of physical-world spatial interaction patterns that have been 
observed for decades. More surprising are results that show that these physical world patterns persist 
in collective intelligence processes that require no physical world movement. Hecht and Gergle [2010] 
defined a spatial interaction spectrum on which all geographic crowdsourcing processes exist that is 
defined by two endpoints: (1) “you have to be there” processes, in which travel to the site about which 
one is contributing is required (e.g. taking a geotagged photo) and (2) “flat Earth” processes, in which 
no travel is required at all (e.g. making a spelling correction on a geotagged Wikipedia article). Hecht 
and Gergle [2010] and Hardy et al. [2012] showed that even for mostly “flat Earth” processes like editing 
Wikipedia, spatial interaction still dramatically decreases with increasing distance, with people much 
more likely to edit Wikipedia articles about places near to them than those that are far away. Moreover, 
in ongoing work, we recently identified that for non-local geographic crowdsourcing contributions, “flat 
Earth” processes may even have roughly the same “friction of distance” (i.e. strength of negative 
association with distance) as “you have to be there” processes. 

2.3 Structured Variations in Population Density 
Human geographers frequently study phenomena associated with structured variations in population 
density. These variations are most noticeable in the form of the urban/rural “divide”, but also occur 
within metropolitan areas. Across a number of research projects, we have observed substantial effects 
on collective intelligence processes due to population density variation. By and large, this has resulted 
in collective intelligence systems that work well in urban areas, are less effective in North American 
suburban areas, and fail in rural areas. We found this to be the case in a wide variety of contexts 
including peer production communities [Johnson et al. 2016], sharing economy platforms [Thebault-
Spieker et al. 2015; Thebault-Spieker et al. 2017], collective intelligence components of location-based 
games [Colley et al. 2017], and geotagged social media [Hecht and Stephens 2014]. 
 
For example, with regard to peer production, we have observed that Wikipedia articles describing rural 
areas are of lower quality, have less content written by humans (rather than bots), and likely contain a 
smaller percentage of local knowledge than their urban counterparts [Johnson et al. 2016]. We have 
also observed the same phenomenon in OpenStreetMap [Johnson et al. 2016]. In fact, our results 
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suggest that much of the “peer produced” content describing rural areas is not actually peer produced 
at all: it is bot-generated.  
 
We have hypothesized that, in certain cases, it may be nearly impossible for collective intelligence 
approaches to succeed in rural areas.  Our urban-rural findings above can likely be attributed to at least 
two causes: (1) under-participation in collective intelligence communities in rural areas and (2) the ratio 
between the amount of work that needs to be done and the number of people local to the work region. 
Research on increasing participation can address the first cause (e.g. [Halfaker et al. 2014]), but a 
solution to the second is much less tractable.  
 
More generally, we believe that collective intelligence may fail in rural areas for what we call “per-area” 
processes, and that this is also true of research projects and applications that seek to use data from 
collective intelligence systems [Johnson and Hecht 2016]. We have described geographic processes 
associated with the number of people in a place as “per-capita” processes, e.g. the number of sports 
teams in each city (many local sports teams require large local audiences). Per-area processes are on 
the other side of the spectrum: they are independent of the number of people in a location, e.g. natural 
history topics. In order for collective intelligence to succeed in rural areas in the case of per-area 
processes – for example, writing good Wikipedia content about rural areas’ natural history –  at least 
one of two highly unlikely events must occur: (1) rural participation must be orders of magnitude higher 
than in urban areas and/or (2) urban users must contribute information about rural areas at 
tremendous scales, which, as per distance decay, is quite implausible. 
 
Lastly, while more work needs to be done examining geographic collective intelligence systems in 
suburban geographies, we have completed early research on this topic. Specifically, we found that for 
UberX, population density is a significant negative predictor of wait times in the Chicago metropolitan 
area [Thebault-Spieker et al. 2017]. The primarily implication of this result is that suburbs have much 
longer wait times. We also saw a similar effect in TaskRabbit [Thebault-Spieker et al. 2015]. 

3. DISCUSSION 

The above research has focused on identifying and explaining problematic geographic variation in the 
effectiveness of collective intelligence systems using core human geographic principles. However, a 
small body of research also has recognized the potential for improving performance by actively 
leveraging these principles into core system design. In particular, Sen et al. [2015] found that 
incorporating key geographic principles into their models resulted in peer-production crowdsourcing 
being more effective for a specific natural language processing task (semantic relatedness estimation). 
We are hopeful that future work that takes similar approaches will lead to similar outcomes. Along 
the same lines, while we have focused on three geographic principles here, many others are worthy of 
consideration. For instance, in Thebault-Spieker et al. [2017], we discuss how the notion of mental 
maps can play an important role in physical crowdsourcing.  
 
Finally, we note that although our work has focused on collective intelligence contexts, geographic 
principles like those considered here will likely affect most systems in “geographic human-computer 
interaction” [Hecht et al. 2013] in a similar fashion. This has led us and our colleagues Johannes 
Schöning and Isaac Johnson to discuss a tentative “First Law of Geographic HCI”: An algorithm or 
sociotechnical system that works one way in one area will not necessarily work the same way in another 
area (akin to the First Law of Geography [Tobler 1970], this is more of a “rule of thumb”). 
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