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ABSTRACT 
The lack of certain types of geographic data prevents the 
development of location-aware technologies in a number of 
important domains. One such type of “unmapped” 
geographic data is space usage rules (SURs), which are 
defined as geographically-bound activity restrictions (e.g. 
“no dogs”, “no smoking”, “no fishing”, “no 
skateboarding”). Researchers in the area of human-
computer interaction have recently begun to develop 
techniques for the automated mapping of SURs with the 
aim of supporting activity planning systems (e.g. one-touch 
“Can I Smoke Here?” apps, SUR-aware vacation planning 
tools). In this paper, we present a novel SUR mapping 
technique – SPtP – that outperforms state-of-the-art 
approaches by 30% for one of the most important 
components of the SUR mapping pipeline: associating a 
point observation of a SUR (e.g. a ’no smoking’ sign) with 
the corresponding polygon in which the SUR applies (e.g. 
the nearby park or the entire campus on which the sign is 
located). This paper also contributes a series of new SUR 
benchmark datasets to help further research in this area.  
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INTRODUCTION & MOTIVATION 
In the past decade, location-aware technologies have made 
the leap from research prototypes to mainstream systems. 
These technologies are pervasive: they guide people from 
point A to point B, they help them decide where to eat, they 
supply them with contextually relevant news and 
information, and they provide them with many other 

important services [3,5,16]. However, despite massive 
increases in the prevalence and diversity of location-aware 
technologies, many potential location-aware technologies 
are held back by the lack of data about important 
geographic phenomena [11,12]. If these phenomena were to 
be mapped, entirely new classes of location- aware 
technologies would be enabled.  

One such “unmapped” phenomenon that has recently 
received attention in HCI is that of space usage rules 
(SURs) [10, 11]. Space usage rules are geographically-
bound activity restrictions such as “no smoking”, “no 
fishing”, “no swimming”, and “no campfires”. Despite the 
key role of these rules in protecting public health, enforcing 
the law, and maintaining the environment, there is no large 
dataset of SURs in existence [11]. Indeed, the most 
extensive SUR dataset available lies in OpenStreetMap’s 
tags (e.g. “smoking=no”, “fishing=no”) and these tags have 
extremely limited coverage (e.g. only 7 locations are tagged 
with “fishing=no” in all of North America [10] and only 
around 6,000 objects out of the over 3 billion objects in 
OSM are tagged with “dogs=no, on leash” [4]).  

With the aim of reducing the paucity of digital information 
about SURs, Samsonov et al. [10] recently introduced a 
method to mine SURs from publicly available geotagged 
Flickr photos using computer vision techniques. In this 
paper, the authors demonstrated that their approach is 
capable of identifying SUR indicators (e.g. “no dog” signs) 
in the background and foreground of uploaded photos. 
However, as Samsonov et al. point out, identifying the 
presence of a SUR indicator at a given latitude and 
longitude coordinate (e.g. a geotag) is only the first of two 
challenges associated with SUR mapping. The second 
challenge – determining the polygon (i.e. area) in which he 
observed SUR applies – was not the focus of Samsonov et 
al. [10], with the authors only attempting very 
straightforward approaches (e.g. selecting the nearest 
OpenStreetMap (OSM) polygon).  

This note presents the first work to rigorously consider the 
challenge of matching a point SUR observation to the 
polygon in which the SUR applies, a problem we label the 
SUR Association Problem. The core contribution of this 
research is a novel technique – Smart-Point-to-Polygon 
(SPtP) – whose accuracy on the SUR Association Problem 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org.
CHI'16, May 07 - 12, 2016, San Jose, CA, USA Copyright is held by the 
owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503- 
3362-7/16/05�$15.00 
DOI: http://dx.doi.org/10.1145/2858036.2858053 

Contextual Awareness #chi4good, CHI 2016, San Jose, CA, USA

2442



is almost 30% greater than the current state-of-the-art 
(Samsonov et al.’s work). SPtP, which recently won a 
Germany-wide computer science competition 
(http://informaticup.gi.de) on SUR mapping,  also has the 
important advantage of being able to function in a wider 
variety of geographic contexts relative to the state-of-the-
art, for instance places with poor OpenStreetMap (OSM) 
polygon coverage. These improvements are enabled by 
SPtP’s combination of machine learning techniques — in 
particular ensemble learning and genetic algorithms — with 
an understanding of spatial reasoning and the built 
environment. 

The research described below also makes two supporting 
contributions. First, along with this note, we are releasing 
three new SUR Association Problem evaluation datasets, 
datasets that are up to 4 times larger than was previously 
available. Second, although research on SUR mapping has 
thus far largely occurred within HCI, we believe other areas 
of computer science can also contribute to this domain. In 
this vein, we also contribute the first formal definition of 
the SUR Association Problem, encoding the problem in a 
fashion that is amenable to a variety of machine learning 
approaches. 

THE SUR ASSOCIATION PROBLEM 
We can define the SUR Association Problem as mapping a 
point observation of a SUR (e.g. a “no smoking” sign near a 
park) pSUR with the corresponding polygon PTARGET to which 
the SUR applies (e.g. a park to which the sign is referring). 
Arbitrarily choosing a bounding box around pSUR will not 
yield useful results, as SURs typically apply to distinct 
spatial features, as it is outlined in prior work by Samsonov 
et al. [10]. Thus the SUR Association Problem boils down 
to selecting the polygon that is most likely to match PTARGET 
(i.e. the intended area the SUR applies to) from the set of 
potential candidate polygons Ω". 

To measure the performance of SUR Association Problem 
algorithms, we use the polygon intersection ratio (R) [9]. R 
operationalizes the assumption that two polygons are more 
similar when they share more of their areas. More formally, 
the intersection ratio between a candidate SUR polygon 
PCANDIDATE ∈ 	Ω"	and the actual SUR polygon PTARGET is: 

DATA SOURCES & DATASETS 
We use OpenStreetMap data (as in prior work [10]) to find 
or create candidate polygons 𝛀𝑷 around a given pSUR. We 
also test our algorithms using OpenStreetMap polygons. 
Below, we describe our data sources, training datasets and 
test data in more detail.  

OSM often contains hundreds or even thousands of 
geographic entities to which SURs around a pSUR can be 
associated (e.g. restaurants, schools, churches, stores, parks, 
airports). Therefore, we limit the set of potential candidate 
polygons 𝛀𝑷 by just considering OSM features in a 500m 

radius around a pSUR.. These entities are represented as 
either points (“nodes”) or polygons (“ways”). The polygons 
can be used as-is as PTARGET candidates for the SUR 
Association Problem, but the points must first be 
transformed into polygons. We do so by generating a 
circular area around each point or “node”, treating this new 
area as a polygon to which a SUR can be associated. The 
radius of this area differs based on the type of geographic 
entity under consideration, e.g. a train station gets a larger 
radius than a restaurant.  

To train our algorithm, the authors collected a dataset of 
207 geotagged photos of SURs (pSUR) with a total of 305 
space usage rules and 53 distinct SURs (ranging from “no 
smoking” to “no motorcycle helmets in the building”) 
mostly in the Hamburg, Germany metropolitan area. In 
addition, we also manually collected the corresponding 
PTARGET polygons. We refer to this dataset as 
TRAINING207.  

To test our developed algorithm, which we describe in 
detail below, we used three distinct test data sets with 
multiple pSUR and their corresponding PTARGET polygons. The 
first data set, which we refer to as EVAL96, was created by 
university students in eastern Belgium. As part of a class 
assignment, the students were sent out to find SURs in their 
neighborhoods and the students collected pSUR with the 
corresponding polygons PTARGET. EVAL96 contains 96 
geotagged photos of SURs with a total of 128 space usage 
rules and 21 different SURs (ranging from “no alcohol 
consumption” to “no cellphone use”). The second dataset, 
EVAL102, contains 102 different geotagged SUR photos 
(containing 150 SURs and 40 distinct types of SUR), also 
from the Hamburg area (no photos appearing in EVAL102 
also appear in TRAINING207). Finally, EVAL243 consists 
of data provided by the participants of the InformatiCup. 
The InformatiCup is a yearly programming challenge 
organized by the “Gesellschaft für Informatik”, the national 
computer science society of Germany. Around 30 different 
groups participated in this challenge and provided 243 
geotagged SUR photos (and their corresponding PTARGET). 
These photos contain 427 space usage rule indicators from 
all over Germany, with 52 distinct types of indicators.  

THE SPTP ALGORITHM 
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Wolpert and Macready [15] describe the “No Free Lunch 
Theorem” as a general limitation for optimization problems. 
They show that “the computational cost of finding a 
solution, averaged over all problems in the class, is the 
same for any solution” [17]. In the context of the SUR 
Association Problem, this suggests that if we find a single 
algorithm that selects good polygons for some types of 
SURs and SUR locations, there will SURs and SUR 
locations for which other algorithms will do better. As 
has been done in prior work [2,7,14], we use ensemble 
learning [6,8] to address this general challenge for 
optimization problems. The basic idea is the following: by 
combining different algorithms that are better than 
random guessing (referred to as weak



classifiers), we get a single algorithm (referred to as a 
strong classifier) that performs better than any weak 
classifier alone. The goal is that each time a weak classifier 
is added, the error rate of the strong classifier is reduced. 
Another important aspect of ensemble learning is that each 
of the weak classifiers should be optimally weighted by its 
performance (Table 1). To calculate these weights, we use a 
simple genetic algorithm [1] as described below.  

Weak Classifiers 
All of the weak classifiers we developed rate each 
candidate polygon PCANDIDATE ∈ 	Ω"	in a radius of 500m 
around a given pSUR with a real number between 100 (very 
likely to match PTARGET) and -100 (very unlikely to match 
PTARGET), with zero being a purely neutral value. The rating 
of each weak classifier is then multiplied with the 
classifier’s learned weight, and these values are then 
summed together across all weak classifiers. This process 
results in each candidate polygon PCANDIDATE ∈ 	Ω" 
receiving a score S(PCANDIDATE) from the ensemble 
classifier. The polygon with the highest S(PCANDIDATE) is 
then selected by the classifier as the most likely extent of 
the SUR indicated in the corresponding point SUR 
observation pSUR (e.g. a “no smoking” sign). All classifiers 
were designed and implemented using prior knowledge we 
gained by analyzing the dataset TRANING207 with known 
PTARGET that were collected by the authors and are distinct 
from the testing data sets used later. We implemented 
various different classifiers, which can be divided into the 
six categories that form the sub-sections below. In a second 
step, a genetic algorithm determined the weights of the 
classifiers, which is described in more detail following the 
discussion of the weak classifiers. 

Distance-based Classifiers 
We hypothesized that, in general, PTARGET polygons located 
close to pSUR are more likely to be those to which the 
corresponding SUR applies. As such, we implemented 3 
distance-based classifiers, each of which rates candidate 
polygons according to a different distance metric: (1) the 
distance between pSUR to polygon’s centroid, (2) the 
distance of pSUR to the polygon’s closest edge, and (3) the 
distance of pSUR to polygon’s closest vertex. The second 
algorithm is the algorithm used by Samsonov et al. 

Point in Polygon Classifier 
The “Point in Polygon classifier” is straightforward: it gives 
a PTARGET a rating of 100 if the candidate polygon’s area 
contains pSUR. If not, the candidate is given a rating of -75.  

OpenStreetMap Tag-based classifiers 
As noted above, in addition to spatial entities, 
OpenStreetMap also contains “tags” for these entities. 
These tags describe everything from the main function of 
points and polygons (e.g. “amenity=restaurant”, 
“cuisine=icecream”) to their important features (e.g. 
“wheelchair=yes”) to, in rare cases, space usage rules (e.g. 
“smoking = no”, as discussed above). While analyzing the 
data of TRANING207 with known PTARGET, we noticed that 

there are some combinations of space usage rules and tags 
that are more likely to occur than others. For example, “no 
swimming” is more likely to be associated with a polygon 
containing the tag “natural=water” than one containing the 
tag “amenity=restaurant”. Based on this observation, we 
implemented two additional weak classifiers named SUR 
Description and SUR OSM Mapping, with SUR 
Description handling one-to-many rules (e.g. “no 
swimming” could be associated with a beach, pool, lake, 
etc.) and SUR OSM Mapping handling one-to-one rules 
(e.g. “no motorcycle helmets inside” is frequently a rule for 
banks in Europe, but only banks). SPtP has 16 SUR 
Description rules and 33 SUR OSM Mapping rules in its 
current version, all of which were manually developed. Full 
details describing all rules can be found in the source for 
SPtP (see below).  

Orientation-based classifier 
Although there are other possible approaches (see below), 
all prior work involving SURs has used geotagged photos 
as the point SUR observations pSUR (and this is true of all of 
our datasets). When storing a geotagged photo, some 
cameras automatically encode the camera’s orientation 
(rotation) into the photo’s Exif metadata. We developed a 
classifier that is able to leverage this orientation information 
(when it is available) by giving polygons that are in the line 
of sight of the camera higher ratings.  

Computer Vision-based classifier 
In addition to leveraging information from Exif metadata, 
we also developed a classifier that uses the images 
themselves. This classifier determines whether a photo was 
taken outside or inside using an approach based on 
Szummer et al [13]. Once the inside/outside property of the 
image was determined, we compared this with a manually 
developed mapping from (SUR type, type of space {inside, 
outside}) tuples (e.g. “no smoking” and inside) to the type 
of polygon to which this tuple is likely to apply (e.g. 
“amenity=building” in the case of “no smoking” and 
inside). Polygons that matched this mapping were given a 
high rating, and those that did not were given a low rating. 

Figure 1: Comparison of the number and percentages of 
correctly identified polygons by Samsonov et al. (SAM) and 
SPtP (SPtP) averaged over all three evaluation datasets. The 

graph shows the minimum intersection ratio for a polygon to be 
eligible to be “correct”.  
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Genetic algorithm 
As noted above, we used genetic algorithm to determine the 
weights (influence) to assign to each of our weak 
classifiers. The first population of weights was assigned to 
random values, and descendants of this population were 
determined using standard genetic algorithm approaches. 
Fitness of each descendant was determined by comparing 
the corresponding strong classifier’s prediction for each 
pSUR in TRAINING207 against its human-labeled PTARGET 
(using the polygon intersection ratio R).  

EVALUATION & RESULTS 
As described above in the datasets section, we used three 
different datasets for the evaluation of SPtP and the 
intersection ratio (R) as our evaluation metric. In addition, 
we have counted the number of correct associations of PSUR 
to PTARGET , with “correct” defined by different intersection 
ratio values ranging from at least 5% overlap to at least 
50% overlap (Table 1). The evaluation was done based on 
OSM data downloaded in June 2015.  

As seen in Table 1 and Figure 1, our approach exceeds the 
approach of Samsonov et al. for all definitions of correct 
and in all datasets. On all three datasets, our approach 
suggests PTARGET polygons with an average intersection ratio 
of about 60%. It can also be seen that the approach of 
Samsonov et al. has problems with larger and more diverse 
datasets such as EVAL102 and EVAL243, whereas the 
performance of our approach stays around 60 % and is even 
the highest for the most complex dataset EVAL243. Not 
surprisingly the most matches with R = 100% in our 
algorithm (an exact match of a PCANDIDATE with a PTARGET) 
was found in the EVAL102, the dataset that had the same 
regional scope as TRAINING207 (26 out of 102 had R = 
100, as compared to 23 out of 102 for Samsonov et al.). In 
EVAL96 and EVAL243, SPtP achieved R=100% for 0 
polygons and R=75% for 143 polygons, respectively (as 
compared to 0 and 54 polygons for Samsonov et al).  

Unpacking the performance of SPtP, we found that certain 
weak classifiers were more effective than others (table 1). 
For example, both tag-based classifiers had higher weights 
(4.3 and 3.5) compared to the weights of the distance-based 
classifier (0.5, 2.8, 0.5). Interestingly the computer vision-
based classifier also had a relative high weight (1.0) 
compared to the distance-based classifier.  

CONCLUSION & FUTURE WORK 
In this paper, we have presented a new technique, SPtP, 
that by using ensemble learning and genetic algorithms 
improves our ability to associate point space usage rule 
observations with their corresponding area of application. 
In addition, we have contributed three new datasets 
(TRAINING207, EVAL96, EVAL102, EVAL243) that can be 
used for the training and evaluation of future SUR 
Association Problem approaches. All of the datasets, as 
well as our SPtP code, are available on online at 
https://github.com/Top-Ranger/SPtP, and we invite other 
researchers to attempt to replicate and extend our approach. 

Although we outperformed the SUR Association Problem 
state-of-the-art, there is much future work to do: 1) There 
are likely more weak classifiers that can be developed, and 
the weak classifiers we did include can likely be improved. 
One promising avenue involves incorporating non-OSM 
data (e.g. algorithms that operate on remotely sensed 
imagery). 2) SUR mapping is not the only problem that can 
be supported by “smart point-to-polygon” approaches. For 
instance, SPtP may be useful for associating photos with 
their subject, rather than their specific geotag. 3) Some 
SUR observations may be associated with multiple 
polygons. Thanks to OpenStreetMap’s relations, which link 
together related polygons (e.g. islands and their 
corresponding country), SPtP supports these situations 
where relations have been encoded. However, in many 
places, relations are not common. Future work should 
examine an extension of the SUR Association Problem in 
which a SUR can be associated with several polygons. 
Finally, the increased accuracy of SPtP helps to open up 
new possibilities for SUR mapping more generally. For 
instance, we have created a working prototype of an app to 
support the explicit crowdsourcing of SUR mapping. The 
app allows contributors to snap a photo of a SUR sign (e.g. 
“no dogs”) and select the polygon in which the 
corresponding SUR applies. By incorporating SPtP into this 
app and automatically suggesting polygons in a ranked 
fashion, we will decrease the effort associated with each 
new SUR observation and hopefully increase the number of 
SURs that get mapped. 
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EVAL96 EVAL102 EVAL243 

Dist. Centroid 
(identical to SAM [10]) 

39.3 % 33.3 %  30.9 % 

Dist. Closest Edge 37.5 % 37.7 % 39.7 % 

Dist. Closest Vertex 36.9 % 31.6 % 34.6 % 

SUR Description 5.1 % 2.2 % 4.8 % 

SUR OSM Mapping 5.3 % 4.5 % 2.9 % 

Orientation 6.5 % 2.1 % 5.8 % 

Computer Vision 2.7 % 0.6 % 2.7 % 

SPtP – Equal Weights 54.7 % 45.3 % 45.7 % 

SPtP – Weights with 
Genetic Algorithm   

62.2 %  60.2 % 63.2 % 

Table 1: Overview of the individual performance of the different 
weak classifiers as well as the average intersection ratio of the 

approaches of Samsonov et al. (SAM) and our technique SPtP. The 
Samsonov et al. approach is identical to our first weak classifier cf. 

[10] (analysis based on OSM data from Nov. 2015)
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