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ABSTRACT 
Recent work has identified the lack of space usage rule 
(SUR) data – e.g. “no smoking”, “no campfires” – as an 
important limitation of online/mobile maps that presents risks 
to user safety and the environment. In order to address this 
limitation, a large-scale means of mapping SURs must be 
developed. In this paper, we introduce and motivate the 
problem of mapping space usage rules and take the first steps 
towards identifying solutions. We show how computer vision 
can be employed to identify SUR indicators in the 
environment (e.g. “No Smoking” signs) with reasonable 
accuracy and describe techniques that can assign each rule to 
the appropriate geographic feature.  

INTRODUCTION 
In 2013, a hunter started an illegal campfire that grew out of 
control and ended up damaging California’s famous 
Yosemite National Park [4]. By violating a space usage rule 
(SUR) – a restriction against campfires – this hunter caused 
severe environmental and property damage and was a serious 
hazard to public safety. 

SURs are not limited to constraints on campfires. Most of us 
encounter space usage rules frequently as we go about our 
day. From “no smoking” to “no fishing” to “no swimming”, 
these rules maintain public health, enforce important laws, 
and protect fragile ecosystems. More generally, SURs are a 
critical mechanism through which governments and other 
stakeholders (e.g. landowners) manage our interaction with 
our environment. 

However, despite their importance and ubiquity, space usage 
rules are absent from location-aware technologies. Schöning 
et al. [5] recently reported that while traditional paper maps 
frequently inform map readers of the space usage rules in the 
depicted area, no popular mobile or online map does the 
same. This omission is more than just a missing feature. As 
people become more and more dependent on their mobile 
devices as guides to unfamiliar spaces, the lack of support for 
SURs threatens to undermine the awareness of SURs and 
reduce their benefits. 

The potential of SURs for location-aware technologies 
extends well beyond improvements to online and mobile 
maps: SURs can also enable an entirely new class of context-
aware applications. For instance, it is easy to imagine a 
SUR-based app that tells smokers if it is legal to light a 
cigarette in their current location (and direct them to the 
nearest smoking area if it is not) and, similarly, an app that 
tells hunters where it is okay to start a campfire.  

One can also easily imagine straightforward algorithms that 
provide routing instructions to help dog owners avoid “no 
dogs allowed” areas when walking their dogs and apps that 
generate vacation recommendations for specific areas that 
allow activities of interest (e.g. climbing, fishing, 
swimming). Along the same lines, SUR-based technologies 
could also help people negotiate complex issues with spatial 
components, such as laws that regulate where one can bring a 
concealed weapon in several U.S. states and laws that restrict 
the flight area of personal drones. 

However, before these novel SUR-based technologies can be 
developed and before online/mobile maps can support SURs, 
a critical problem must be solved: space usage rules must be 
mapped. As we will show below, outside of a very small 
number of OpenStreetMap (OSM) tags, no dataset of SURs 
currently exists. 

In this paper, we introduce the first techniques for the 
widespread mapping of space usage rules. Doing this 
mapping accurately and on a global scale is a challenging 
task that will require a variety of approaches. The goal of this 
paper is to demonstrate that the time is right to begin 
addressing the SUR mapping problem by demonstrating the 
feasibility of one family of approaches: those informed by 

 

Figure 1: An example of a “no-sign” showing a space usage 
rule (SUR), specifically “no dogs allowed”.  
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computer vision. The objective of our computer vision-based 
technique is to mine publicly available geotagged photos for 
“no-signs” such as those shown in Figure 1 and Figure 2 and 
map the corresponding SURs to the appropriate spatial 
regions.  

One major benefit of computer vision-based approaches is 
that they can be used on large datasets of geographically-
referenced imagery, particularly those available to Google 
and Microsoft in their Streetview and Streetside corpora. 
While we show below that using publicly available image 
datasets allows us to increase the number of SURs available 
in OpenStreetMap by a significant amount, our methods 
below have been developed with an eye towards these larger 
corpora and the enormous increase in SURs that would result 
if similar methods were applied to them. 

To summarize, this note makes the following contributions: 

1. We introduce and motivate the space usage rule (SUR) 
mapping problem, discussing the need for SURs in 
existing technologies (e.g. mobile maps) and highlighting 
the technologies that could be enabled with a large-scale 
dataset of SURs. 

2. We report the results of a small survey of SURs, finding 
that rules can be complex and can rely on indicators in the 
environment (e.g. “no-signs”). 

3. We show that the only public dataset of usage rules – 
SUR-like “tags” in OSM – is extremely limited in size, 
scope, and geographic extent. 

4. We introduce a computer vision technique that can map 
SURs by automatically detecting “no-signs” (i.e. usage 
rules indicators) in geotagged photos. We also identify 
straightforward approaches to assign the corresponding 
SURs to the correct spatial features in OSM. 

SURVEY OF SPACE USAGE RULES 
To inform the design of our SUR mapping techniques, we 
first conducted a survey of SURs. Because Schöning et al. [5] 
found many SURs on public park maps, we surveyed the 
websites of 25 well-known parks in urban areas and 25 in 
rural areas using Wikipedia’s lists of parks articles (e.g. “List 
of national parks of the United States”). Four to five parks of 
each type from every populated continent were selected. 

Overall, we found that there was an average of 7 SURs listed 
per urban park website and 6.9 per rural park website. Over 
half (56%) of these rules applied not to the entire park, but to 
specific places in the park, and many of the rules were 
restricted to types of areas (e.g. paths, grass areas), adding 
complexity to SUR mapping efforts. In addition, in certain 
cases, the areas in which rules applied were not fully 
specified on the website. For instance, the website for New 
York City’s Central Park lists several specific places where 
dogs must be leashed and adds that the rule also applies in 
“other areas where signs requiring dogs to be leashed are 
posted.” Examining this “where posted” phenomenon in 
more detail, we found it to be common. For instance, in 

Minnesota, a business owner can ban guns in her business by 
posting a sign. 

The complexity and non-specific nature of official usage 
rules led us to our computer vision-based “no-sign” detection 
approach as our first SUR mapping effort. This approach is 
robust against the “where posted” phenomenon, and can 
capture broader rules (e.g. park- or city-wide rules) as well in 
many cases. In the discussion section, we highlight other 
possible SUR mapping approaches and how they can 
complement the techniques described here. 

USAGE RULE TAGS IN OSM 
As noted above, the only public dataset of space usage rules 
of any size is embedded in OpenStreetMap. These rules are 
encoded by OSM contributors through the use of “tags” that 
are applied to spatial features. In order to understand the 
coverage of these tags, we examined the tags on all spatial 
features in the global OSM dataset. We focused on three 
SUR tags in particular: no-dogs, no-smoking, and no-fishing. 
These tags were selected as they were the top-used SUR tags.  

The results of our mining of OSM for our three tags can be 
seen in Table 1, which shows that OSM has very few SURs. 
By far the most common is no-smoking, but there are only 
13,976 spatial features total that have this tag. This represents 
less than 0.0006% of all features in OSM. The situation is 
even sparser for the other tags; only 57 water bodies in the 
entire world have been tagged with no-fishing. 

Table 1 reveals that existing approaches based on 
crowdsourced volunteered geographic information have 
failed thus far to generate a dataset of SURs of a useful size. 
As such, other approaches like our computer vision-based 
technique are needed to develop the global or semi-global 
SUR dataset necessary to support SUR-based applications. It 
is important to note that more targeted crowdsourcing efforts 
may yield better results, something that we touch on in the 
discussion section. 

MINING USAGE RULES FROM GEOTAGGED PHOTOS 
The goals of our computer-vision based approach are (1) to  
identify “no-signs” in geotagged photos like those in Figures 
1 and 2 and (2) to assign the corresponding SURs to the 
correct spatial features in OSM. In this section, we cover 
each of these goals in turn. 

Region no-dogs no-fishing no-smoking 

Europe 137/1738/338 0/5/44 6858/37/3996 

Asia 1/0/0 0/0/0 586/1/153 

North America 5/472/11 0/4/3 1131/0/411 

South America 0/4/2 0/0/0 214/0/43 

Central America 0/0/0 1/0/0 68/0/58 

Africa 0/1/0 0/0/0 107/0/90 

Australia 5/20/1 0/0/0 171/0/52 

Overall 148/2235/352 1/9/47 9135/38/4803 

Table 1: OSM SUR tag distribution for points/lines/polygons. 



To develop our computer vision approach, we used 
geotagged Flickr images. We focused specifically on the 
three SURs above, which means we concentrated on finding 
“no dogs”, “no fishing”, and “no smoking” signs in Flickr 
images. We developed datasets of Flickr images for these 
three tasks by downloading all geotagged Flickr images that 
had the terms “no dog”, “no fishing”, or “no smoking” in 
their titles, descriptions, and/or tags. In this way, we acquired 
29,981 images for “no fishing”, 28,921 images for “no dogs”, 
and 17,268 images for “no smoking”.  

Our computer vision approach to “no-sign” detection occurs 
in two stages: (1) general sign detection and (2) the 
application of a sparse coding-based “no-sign” filter. It is 
important to point out that our work is not the first to address 
the more general “sign detection” problem. Several 
approaches that use visual salience detection to identify 
speed limit signs have been proposed (e.g. [2]). However, 
existing work assumes that a sign is the most salient feature 
in an image. We found that this was not true for most of the 
photos in our three datasets and, due to this assumption 
violation, it was necessary to develop our own approach. 

Stage 1: General Sign Detection Algorithm 
The aim of the first stage of our “no-sign” detection approach 
is to extract candidate signs from the original images, as the 
keyword search alone does not tell us if a “no-sign” is 
actually in the photo. Indeed, examining 3000 randomly-
selected images in our three datasets, we found the 
“keyword-only” baseline precision to be less than 5%. 

Object detection is well-studied in the computer vision 
community and we rely on prominent object detection 
techniques for this stage of the approach. Specifically, we 
apply the Viola-Jones object detection framework [6] with 
Local Binary Pattern (LBP) [3] image features. In our 
implementation, 159 “no-signs” cropped from the overall 
images are used as positive training data, while 1,060 “sign-
free” random images are used as negative training data.  

Using this dataset of 1,219 images, a 25-stage cascade 
classifier was trained. Example output can be seen in Figure 
2. While the classifier was relatively robust against 
illumination variation and image tilting, the classification 
performance was not sufficiently high.  Table 2 shows the 
precision of this stage of our approach. While precision for 

all types of signs was significantly higher than the 5% 
baseline, it was around or below 50% in every case. As such, 
in order to increase the performance of our approach, we 
added a second stage of processing, which is described 
below. Images in which our general sign detection algorithm 
finds “no-signs” get passed to the second stage. 

Stage 2: Filtering with Sparse Coding 
The second stage of our computer vision approach leverages 
sparse coding [7]. Using the sparse coding model, we 
developed a non-learning algorithm for detecting different 
“no-signs” through which most false positives among 
candidate signs are pruned, while most true positives are 
retained.  

The sparse coding model tries to sparsely represent input 
objects. In the case that an input object is similar to a small 
number of bases, the representation residual is low, 
otherwise, the residual is high. The set of bases in a sparse 
coding model, therefore, should contain instances able to 
cover various kinds of the objects under consideration (true 
positive signs in our task). The bases in our approach contain 
edges of standard cropped signs having varying appearances 
as well as varying angles. The goal was to have our model be 
robust against different sign designs as well as color and 
background variation. In total, our basis set consists of eighty 
bases.  

Following the application of sparse coding, we found that 
precision significantly increased (second row, Table 2). In 
total, after filtering out the relatively small number of false 
positives, our algorithm found 431 “no dogs” signs, 100 “no 
fishing” signs, and 638 “no smoking” signs. These photos 
were then passed on to the SUR-to-spatial feature assignment 
techniques described below. Although the total number of 
photos found was not enormous, if this type of approach 
were applied to a dataset like Google Street View (with some 
improvements, as described below), the number of extracted 
SURs would increase dramatically. In our work, we heavily 
biased precision over recall in order to ensure the entire 
pipeline – from photo to OSM tag – was effective. Future 
work will seek to increase recall, which was not possible to 
assess given the large numbers of photos involved (over 
70,000). 

ASSIGNING RULES TO SPATIAL FEATURES 
The final step of our computer vision-based approach is to 
assign the SUR in a geotagged photo of a “no-sign” to the 
correct spatial feature in OSM (e.g. park region, building). In 
other words, the goal in this step is to take, for instance, a “no 
dogs” sign outside of a playground and tag the playground 
feature in OSM with the no-dogs tag. 

To evaluate methods for accomplishing this task, we first 
downloaded all available OSM data in a 250m buffer around 
the geotags of the 1,169 identified “no sign” photos, 
excluding the small percentage of cases (<10%) where there 
was very little OSM data in this buffer zone (< 2KB). Next, 
we searched for pre-existing no-fishing, no-dogs, and no-
smoking tags in each buffer zone and found 0, 1, and 51 tags, 

Method “No dogs” “No fishing” “No smoking” 

Stage 1 .425 .364 .548 

Both Stages .840 .829 .915 

Table 2. Detection precision for all three types of signs 
using the first stage of the algorithm only and both stages 
(general sign detection and filtering with sparse coding) 

   

Figure 2: Sample results of the general detection algorithm.  



respectively. Because of the limited number of no-dogs and 
no-fishing tags, we focused on no-smoking tags for the 
remainder of our sign-to-region study. 

We used the 51 no-smoking photo/tag combinations as 
ground truth for testing a variety of straightforward 
approaches for assigning a “no-sign” SUR photo to the 
correct spatial feature. It is important to note that the lack of a 
bigger ground truth data demonstrates there is very little 
overlap between geotagged photos of “no-signs” and tagged 
features in OSM. In fact, we found that just with our 
preliminary dataset of “no-signs” photos mined using the 
algorithm described above, we can boost the number of 
features with SUR tags in OSM by 15.0% for no-dogs, by 
171.9% for no-fishing, and by 4.2% for no-smoking.  

We evaluated four basic algorithms for assigning the no-
smoking tag to the correct spatial feature (Table 3). The most 
elementary of the algorithms – simply choosing the nearest 
OSM feature – has the highest accuracy (97.6%). This 
suggests that assigning point-based SUR indicators to spatial 
features may be straightforward. 

DISCUSSION & CONCLUSION 
In this paper, we have discussed the need for location-aware 
systems (e.g. mobile maps) to incorporate space usage rules 
(SURs) like “no smoking” and “no campfires”, surveyed new 
location-aware technologies that would be enabled with 
SURs, and focused on the key problem of mapping SURs. 
We also demonstrated that computer vision approaches –
 combined with a straightforward technique to assign SUR 
indicators found in photos to spatial features – can help us 
address this problem. However, as noted above, a number of 
other techniques for developing SUR datasets can likely be 
effective, and our immediate future work involves 
investigating some of these techniques. 

One promising approach involves using crowdworkers to 
capture SURs from official websites. We are developing an 
easy-to-use system that simplifies the encoding of complex 
SURs, e.g. Alaska State Parks’ “Discharge of firearms within 
½ mile of any developed park facility is prohibited”. Major 
challenges include developing web mining techniques to 
identify SUR web pages (and to possibly automatically 
encode simple rules). 

Another area of future research involves examining SUR-
based applications with a lens informed by the interaction of 
law and technology. Because an incorrect SUR could lead to 
someone unintentionally breaking an important law, it may 
be possible that accuracy thresholds will be quite high for 
SUR mapping or that effective means of communicating 
uncertainty will need to be developed. 

A limitation of this work is that we only tested our computer 
vision approach on “no-signs” that use a basic round shape 
(e.g. Fig. 2). In some countries, certain types of “no-signs” 
have different shapes, such as the polygon used in Brazil. 
While our approach in theory should work with any shape 
that is in the training set, we did not evaluate the approach’s 
robustness in this respect. 

Finally, it is important to reiterate that while we 
demonstrated that computer vision approaches can be used 
find SUR indicators (i.e. “no-signs”) in geotagged Flickr 
images, the most significant value of this type of approach is 
in its application to large corpora of spatially-referenced 
imagery (e.g. Google Street View). In order for this to occur, 
several additional challenges must be addressed. In 
particular, our techniques must be tested on additional types 
of “no-signs”, recall may need to improve, and methods for 
distinguishing between different types of “no-signs” must be 
developed. Early work on this latter problem suggests that 
similar approaches to those above can be effective. We were 
able to achieve 65.1% accuracy classifying images of four 
types of “no-signs” (the three considered above plus “no 
swimming”) using sparse coding techniques.  
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Method Accuracy 

Tag the closest OSM feature 97.6% 
Tag the closest OSM node 87.8% 

Tag the closest OSM polygon 12.2% 

Tag the closest polygon belonging to the categories  
[Restaurants, Fast Food, Cafe, Pub, Bar] (which often 

have no-smoking tags), else select closest node 
belonging to these categories 

85.4% 

Table 3. The accuracy of various methods for assigning 
SURs in photos to the appropriate OSM feature. 


